有限域的算法

T. Rao
{"title":"有限域的算法","authors":"T. Rao","doi":"10.1109/ARITH.1981.6159289","DOIUrl":null,"url":null,"abstract":"The arithmetic operations in finite fields and their implementation are important to the construction of error detecting and correcting codes. The addition, multiplication and division in the field GF(2m) are implemented as polynomial operations using binary logic of flip-flops and EXOR's. For fields of non-binary characteristic, modular arithmetic (with modulus p, a prime) becomes important. This paper focuses on problems relating to the arithmetic of GF(p), and some recent results and new ideas on this topic are presented here.","PeriodicalId":169426,"journal":{"name":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic of finite fields\",\"authors\":\"T. Rao\",\"doi\":\"10.1109/ARITH.1981.6159289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The arithmetic operations in finite fields and their implementation are important to the construction of error detecting and correcting codes. The addition, multiplication and division in the field GF(2m) are implemented as polynomial operations using binary logic of flip-flops and EXOR's. For fields of non-binary characteristic, modular arithmetic (with modulus p, a prime) becomes important. This paper focuses on problems relating to the arithmetic of GF(p), and some recent results and new ideas on this topic are presented here.\",\"PeriodicalId\":169426,\"journal\":{\"name\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1981.6159289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1981.6159289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限域内的算术运算及其实现对纠错码的构造具有重要意义。字段GF(2m)中的加法、乘法和除法使用触发器和EXOR的二进制逻辑作为多项式运算实现。对于非二进制特征域,模运算(模数为p,素数)变得很重要。本文主要讨论了GF(p)的算法问题,并给出了一些最新的结果和一些新的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic of finite fields
The arithmetic operations in finite fields and their implementation are important to the construction of error detecting and correcting codes. The addition, multiplication and division in the field GF(2m) are implemented as polynomial operations using binary logic of flip-flops and EXOR's. For fields of non-binary characteristic, modular arithmetic (with modulus p, a prime) becomes important. This paper focuses on problems relating to the arithmetic of GF(p), and some recent results and new ideas on this topic are presented here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信