基于局部区域的水平集图像分割算法

Mengjuan Chen, Jianwei Li, Hanqing Zhao, Xiao Ma
{"title":"基于局部区域的水平集图像分割算法","authors":"Mengjuan Chen, Jianwei Li, Hanqing Zhao, Xiao Ma","doi":"10.1109/IWECA.2014.6845753","DOIUrl":null,"url":null,"abstract":"A new local region-based level set model in a variational level set formulation is proposed in this paper for image segmentation. In our model, a data term with a novel local region-based function is introduced to stop the contours at edges. Then, the data term is incorporated into a variational level set framework with a length term to smooth the contour and a distance regularization term to maintain the evolution of contour stable. The initial contour with our model can be served as a constant function which is convenient and efficient. Experiments on synthetic and medical images show good performance of our method in handling with images with intensity inhomogeneity and noise.","PeriodicalId":383024,"journal":{"name":"2014 IEEE Workshop on Electronics, Computer and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A local region-based level set algorithm for image segmentation\",\"authors\":\"Mengjuan Chen, Jianwei Li, Hanqing Zhao, Xiao Ma\",\"doi\":\"10.1109/IWECA.2014.6845753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new local region-based level set model in a variational level set formulation is proposed in this paper for image segmentation. In our model, a data term with a novel local region-based function is introduced to stop the contours at edges. Then, the data term is incorporated into a variational level set framework with a length term to smooth the contour and a distance regularization term to maintain the evolution of contour stable. The initial contour with our model can be served as a constant function which is convenient and efficient. Experiments on synthetic and medical images show good performance of our method in handling with images with intensity inhomogeneity and noise.\",\"PeriodicalId\":383024,\"journal\":{\"name\":\"2014 IEEE Workshop on Electronics, Computer and Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Workshop on Electronics, Computer and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWECA.2014.6845753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Electronics, Computer and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWECA.2014.6845753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的基于局部区域的变分水平集模型,用于图像分割。在我们的模型中,引入了一个具有新颖的局部区域函数的数据项,用于在边缘处停止轮廓。然后,将数据项合并到一个变分水平集框架中,其中长度项用于平滑轮廓,距离正则化项用于保持轮廓演化的稳定性。该模型的初始轮廓可以作为一个常数函数,方便、高效。在合成图像和医学图像上的实验表明,该方法在处理具有强度不均匀性和噪声的图像方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A local region-based level set algorithm for image segmentation
A new local region-based level set model in a variational level set formulation is proposed in this paper for image segmentation. In our model, a data term with a novel local region-based function is introduced to stop the contours at edges. Then, the data term is incorporated into a variational level set framework with a length term to smooth the contour and a distance regularization term to maintain the evolution of contour stable. The initial contour with our model can be served as a constant function which is convenient and efficient. Experiments on synthetic and medical images show good performance of our method in handling with images with intensity inhomogeneity and noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信