演示:基于5G网络功能和切片负载分析的网络性能提升

Rui Ferreira, João Fonseca, João Silva, Mayuri Tendulkar, Paulo Duarte, Marco Araújo, Raul Barbosa, Bruno Mendes, A. A. Góes
{"title":"演示:基于5G网络功能和切片负载分析的网络性能提升","authors":"Rui Ferreira, João Fonseca, João Silva, Mayuri Tendulkar, Paulo Duarte, Marco Araújo, Raul Barbosa, Bruno Mendes, A. A. Góes","doi":"10.1109/WoWMoM57956.2023.00057","DOIUrl":null,"url":null,"abstract":"The Fifth Generation Mobile Networks has transformed the paradigm of mobile network communications. In Beyond Fifth Generation Networks networks, Machine Learning (ML) and Artificial Intelligence (AI) are crucial components, optimizing network resource management to improve the network performance as well as end-users Quality of Service while lowering the network operating costs. This work makes use of an End-to-End 5G architecture to validate three demonstrations: 1) Radio Access Network monitoring using a Flexible RIC’s xApp; 2) 5G Core Network’s metrics collection via Capgemini Engineering’s Network Data Analytics Function; 3) Analysis of the Core Network’s collected data to predict Network Function load and Network Slice Instance load through the Capgemini Engineering’s NetAnticipate AI/ML engine.","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demo: Enhancing Network Performance based on 5G Network Function and Slice Load Analysis\",\"authors\":\"Rui Ferreira, João Fonseca, João Silva, Mayuri Tendulkar, Paulo Duarte, Marco Araújo, Raul Barbosa, Bruno Mendes, A. A. Góes\",\"doi\":\"10.1109/WoWMoM57956.2023.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fifth Generation Mobile Networks has transformed the paradigm of mobile network communications. In Beyond Fifth Generation Networks networks, Machine Learning (ML) and Artificial Intelligence (AI) are crucial components, optimizing network resource management to improve the network performance as well as end-users Quality of Service while lowering the network operating costs. This work makes use of an End-to-End 5G architecture to validate three demonstrations: 1) Radio Access Network monitoring using a Flexible RIC’s xApp; 2) 5G Core Network’s metrics collection via Capgemini Engineering’s Network Data Analytics Function; 3) Analysis of the Core Network’s collected data to predict Network Function load and Network Slice Instance load through the Capgemini Engineering’s NetAnticipate AI/ML engine.\",\"PeriodicalId\":132845,\"journal\":{\"name\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM57956.2023.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第五代移动网络改变了移动网络通信的模式。在超越第五代网络网络中,机器学习(ML)和人工智能(AI)是优化网络资源管理以提高网络性能和最终用户服务质量的关键组成部分,同时降低网络运营成本。这项工作利用端到端5G架构来验证三个演示:1)使用Flexible RIC的xApp进行无线接入网监控;2)通过凯捷工程的网络数据分析功能收集5G核心网的指标;3)通过Capgemini Engineering的netpredict AI/ML引擎,分析核心网络收集的数据,预测网络功能负载和网络切片实例负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demo: Enhancing Network Performance based on 5G Network Function and Slice Load Analysis
The Fifth Generation Mobile Networks has transformed the paradigm of mobile network communications. In Beyond Fifth Generation Networks networks, Machine Learning (ML) and Artificial Intelligence (AI) are crucial components, optimizing network resource management to improve the network performance as well as end-users Quality of Service while lowering the network operating costs. This work makes use of an End-to-End 5G architecture to validate three demonstrations: 1) Radio Access Network monitoring using a Flexible RIC’s xApp; 2) 5G Core Network’s metrics collection via Capgemini Engineering’s Network Data Analytics Function; 3) Analysis of the Core Network’s collected data to predict Network Function load and Network Slice Instance load through the Capgemini Engineering’s NetAnticipate AI/ML engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信