埋底栅极的石墨烯射频晶体管

Dong-Wook Park, Tzu-Hsuan Chang, S. Mikael, Jung‐Hun Seo, P. Nealey, Z. Ma
{"title":"埋底栅极的石墨烯射频晶体管","authors":"Dong-Wook Park, Tzu-Hsuan Chang, S. Mikael, Jung‐Hun Seo, P. Nealey, Z. Ma","doi":"10.1109/SIRF.2013.6489440","DOIUrl":null,"url":null,"abstract":"To improve process induced mobility degradation of graphene, radio frequency (RF) transistors with buried bottom gates have been fabricated and characterized. In this process, graphene is transferred to the top of finished gates and source/drains as almost the very last step of the entire fabrication process. A unit graphene transistor shows the on-current of 130 μA/μm the I<sub>on</sub>/I<sub>off</sub> ratio of 5.31, and the maximum transconductance of 6.85μS/μm at V<sub>D</sub>= 0.1 V. The graphene RF transistor with a channel length of 600 nm shows a maximum oscillation frequency (f<sub>max</sub>) of 13 GHz and a cut-off frequency (f<sub>T</sub>) of 2 GHz after de-embedding. The higher f<sub>max</sub> than f<sub>T</sub> is due to less source-drain resistance (R<sub>DS</sub>) made by a fully-covered channel region by the buried gate. Because of the higher f<sub>max</sub> the proposed device structure can be a promising candidate for graphene RF transistors and RF amplifiers.","PeriodicalId":286070,"journal":{"name":"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Graphene RF transistors with buried bottom gate\",\"authors\":\"Dong-Wook Park, Tzu-Hsuan Chang, S. Mikael, Jung‐Hun Seo, P. Nealey, Z. Ma\",\"doi\":\"10.1109/SIRF.2013.6489440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve process induced mobility degradation of graphene, radio frequency (RF) transistors with buried bottom gates have been fabricated and characterized. In this process, graphene is transferred to the top of finished gates and source/drains as almost the very last step of the entire fabrication process. A unit graphene transistor shows the on-current of 130 μA/μm the I<sub>on</sub>/I<sub>off</sub> ratio of 5.31, and the maximum transconductance of 6.85μS/μm at V<sub>D</sub>= 0.1 V. The graphene RF transistor with a channel length of 600 nm shows a maximum oscillation frequency (f<sub>max</sub>) of 13 GHz and a cut-off frequency (f<sub>T</sub>) of 2 GHz after de-embedding. The higher f<sub>max</sub> than f<sub>T</sub> is due to less source-drain resistance (R<sub>DS</sub>) made by a fully-covered channel region by the buried gate. Because of the higher f<sub>max</sub> the proposed device structure can be a promising candidate for graphene RF transistors and RF amplifiers.\",\"PeriodicalId\":286070,\"journal\":{\"name\":\"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"volume\":\"417 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIRF.2013.6489440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIRF.2013.6489440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了改善石墨烯的迁移率退化,制备了具有埋底栅极的射频晶体管并对其进行了表征。在这个过程中,石墨烯被转移到成品栅极和源/漏极的顶部,几乎是整个制造过程的最后一步。在VD= 0.1 V时,石墨烯晶体管的导通电流为130 μA/μm,离子/开关比为5.31,最大跨导为6.85μS/μm。通道长度为600 nm的石墨烯射频晶体管在去嵌入后的最大振荡频率(fmax)为13 GHz,截止频率(fT)为2 GHz。fmax比fT高的原因是由于埋地栅极完全覆盖沟道区域所产生的源漏电阻(RDS)更小。由于较高的fmax,所提出的器件结构可以成为石墨烯射频晶体管和射频放大器的有希望的候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphene RF transistors with buried bottom gate
To improve process induced mobility degradation of graphene, radio frequency (RF) transistors with buried bottom gates have been fabricated and characterized. In this process, graphene is transferred to the top of finished gates and source/drains as almost the very last step of the entire fabrication process. A unit graphene transistor shows the on-current of 130 μA/μm the Ion/Ioff ratio of 5.31, and the maximum transconductance of 6.85μS/μm at VD= 0.1 V. The graphene RF transistor with a channel length of 600 nm shows a maximum oscillation frequency (fmax) of 13 GHz and a cut-off frequency (fT) of 2 GHz after de-embedding. The higher fmax than fT is due to less source-drain resistance (RDS) made by a fully-covered channel region by the buried gate. Because of the higher fmax the proposed device structure can be a promising candidate for graphene RF transistors and RF amplifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信