基于声音的软管型机器人时变姿态在线估计方法

Yoshiaki Bando, Katsutoshi Itoyama, M. Konyo, S. Tadokoro, K. Nakadai, Kazuyoshi Yoshii, HIroshi G. Okuno
{"title":"基于声音的软管型机器人时变姿态在线估计方法","authors":"Yoshiaki Bando, Katsutoshi Itoyama, M. Konyo, S. Tadokoro, K. Nakadai, Kazuyoshi Yoshii, HIroshi G. Okuno","doi":"10.1109/SSRR.2014.7017665","DOIUrl":null,"url":null,"abstract":"This paper presents an online method that can accurately estimate the time-varying posture of a moving hose-shaped robot having multiple microphones and loudspeakers. Sound-based posture estimation has been considered to be promising for circumventing the cumulative error problem of conventional integral-type methods using differential information obtained by inertial sensors. Our robot emits a reference signal from a loud-speaker one by one and estimates its posture by measuring the time differences of arrival (TDOAs) at the microphones. To accurately estimate the posture of the robot (the relative positions of the microphones and loudspeakers) even when the robot moves, we propose a novel state-space model that represents the dynamics of not only the posture itself but also its change rate in the state space. This model is used for predicting the current posture by using an unscented Kalman filter. The experiments using a 3m moving hose-shaped robot with eight microphones and seven loudspeakers showed that our method achieved less than 20 cm error at the tip position even after the robot moved over a long time, whereas the estimation error obtained by a conventional integral-type method increased monotonically over time.","PeriodicalId":267630,"journal":{"name":"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A sound-based online method for estimating the time-varying posture of a hose-shaped robot\",\"authors\":\"Yoshiaki Bando, Katsutoshi Itoyama, M. Konyo, S. Tadokoro, K. Nakadai, Kazuyoshi Yoshii, HIroshi G. Okuno\",\"doi\":\"10.1109/SSRR.2014.7017665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an online method that can accurately estimate the time-varying posture of a moving hose-shaped robot having multiple microphones and loudspeakers. Sound-based posture estimation has been considered to be promising for circumventing the cumulative error problem of conventional integral-type methods using differential information obtained by inertial sensors. Our robot emits a reference signal from a loud-speaker one by one and estimates its posture by measuring the time differences of arrival (TDOAs) at the microphones. To accurately estimate the posture of the robot (the relative positions of the microphones and loudspeakers) even when the robot moves, we propose a novel state-space model that represents the dynamics of not only the posture itself but also its change rate in the state space. This model is used for predicting the current posture by using an unscented Kalman filter. The experiments using a 3m moving hose-shaped robot with eight microphones and seven loudspeakers showed that our method achieved less than 20 cm error at the tip position even after the robot moved over a long time, whereas the estimation error obtained by a conventional integral-type method increased monotonically over time.\",\"PeriodicalId\":267630,\"journal\":{\"name\":\"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR.2014.7017665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2014.7017665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种能够在线准确估计具有多个麦克风和扬声器的软管型移动机器人时变姿态的方法。基于声音的姿态估计被认为有希望避免传统的利用惯性传感器获得的微分信息的积分型方法的累积误差问题。我们的机器人一个接一个地从扬声器发出参考信号,并通过测量麦克风的到达时间差(TDOAs)来估计其姿态。为了准确估计机器人在运动时的姿态(麦克风和扬声器的相对位置),我们提出了一种新的状态空间模型,该模型不仅表示姿态本身的动态,而且表示其在状态空间中的变化率。该模型通过使用无气味卡尔曼滤波器来预测当前姿态。对一个带有8个麦克风和7个扬声器的3米移动软管型机器人进行的实验表明,即使机器人在长时间移动后,我们的方法在尖端位置的估计误差也小于20 cm,而传统的积分型方法的估计误差随时间单调增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sound-based online method for estimating the time-varying posture of a hose-shaped robot
This paper presents an online method that can accurately estimate the time-varying posture of a moving hose-shaped robot having multiple microphones and loudspeakers. Sound-based posture estimation has been considered to be promising for circumventing the cumulative error problem of conventional integral-type methods using differential information obtained by inertial sensors. Our robot emits a reference signal from a loud-speaker one by one and estimates its posture by measuring the time differences of arrival (TDOAs) at the microphones. To accurately estimate the posture of the robot (the relative positions of the microphones and loudspeakers) even when the robot moves, we propose a novel state-space model that represents the dynamics of not only the posture itself but also its change rate in the state space. This model is used for predicting the current posture by using an unscented Kalman filter. The experiments using a 3m moving hose-shaped robot with eight microphones and seven loudspeakers showed that our method achieved less than 20 cm error at the tip position even after the robot moved over a long time, whereas the estimation error obtained by a conventional integral-type method increased monotonically over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信