带有嵌入式触摸传感器的3D打印机械手

M. Ntagios, P. Escobedo, R. Dahiya
{"title":"带有嵌入式触摸传感器的3D打印机械手","authors":"M. Ntagios, P. Escobedo, R. Dahiya","doi":"10.1109/FLEPS49123.2020.9239587","DOIUrl":null,"url":null,"abstract":"This paper presents a 3D printed robotic hand designed to have two capacitive touch sensors embedded in the distal phalanges of the fingers. Additionally, the readout electronics have been designed and fabricated to obtain the digital values of the capacitances and to use this data for touch feedback control. The touch or pressure sensors were fabricated by 3D printed electrodes using copper based conductive filament and a two part-rubber as the dielectric. The sensitive rmgertip was tested with dynamic and static stimuli and the average sensitivity of the sensors was found to be 0.6% N-1. The proof-of-concept robot hand developed here shows that the concept could be applied to develop the 3D printed embedded sensorised systems or instrumented objects needed for applications such as internet of things and human-computer interaction.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D Printed Robotic Hand with Embedded Touch Sensors\",\"authors\":\"M. Ntagios, P. Escobedo, R. Dahiya\",\"doi\":\"10.1109/FLEPS49123.2020.9239587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 3D printed robotic hand designed to have two capacitive touch sensors embedded in the distal phalanges of the fingers. Additionally, the readout electronics have been designed and fabricated to obtain the digital values of the capacitances and to use this data for touch feedback control. The touch or pressure sensors were fabricated by 3D printed electrodes using copper based conductive filament and a two part-rubber as the dielectric. The sensitive rmgertip was tested with dynamic and static stimuli and the average sensitivity of the sensors was found to be 0.6% N-1. The proof-of-concept robot hand developed here shows that the concept could be applied to develop the 3D printed embedded sensorised systems or instrumented objects needed for applications such as internet of things and human-computer interaction.\",\"PeriodicalId\":101496,\"journal\":{\"name\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FLEPS49123.2020.9239587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了一种3D打印的机器人手,其设计在手指的远端指骨中嵌入了两个电容式触摸传感器。此外,已经设计和制造了读出电子器件,以获得电容的数字值,并将该数据用于触摸反馈控制。触摸或压力传感器由3D打印电极制成,电极采用铜基导电丝和两部分橡胶作为电介质。在动态和静态刺激下测试了敏感的rmgertip,发现传感器的平均灵敏度为0.6% N-1。这里开发的概念验证机器人手表明,该概念可以应用于开发3D打印嵌入式传感器系统或物联网和人机交互等应用所需的仪器对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Printed Robotic Hand with Embedded Touch Sensors
This paper presents a 3D printed robotic hand designed to have two capacitive touch sensors embedded in the distal phalanges of the fingers. Additionally, the readout electronics have been designed and fabricated to obtain the digital values of the capacitances and to use this data for touch feedback control. The touch or pressure sensors were fabricated by 3D printed electrodes using copper based conductive filament and a two part-rubber as the dielectric. The sensitive rmgertip was tested with dynamic and static stimuli and the average sensitivity of the sensors was found to be 0.6% N-1. The proof-of-concept robot hand developed here shows that the concept could be applied to develop the 3D printed embedded sensorised systems or instrumented objects needed for applications such as internet of things and human-computer interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信