图像分割在老画保护修复中的损失检测

Roman A. Mykolaichuk, Vladyslav Lavrynovych, A. Mykolaichuk, Tetiana Tymchenko, Iryna Somyk-Ponomarenko
{"title":"图像分割在老画保护修复中的损失检测","authors":"Roman A. Mykolaichuk, Vladyslav Lavrynovych, A. Mykolaichuk, Tetiana Tymchenko, Iryna Somyk-Ponomarenko","doi":"10.1109/ATIT50783.2020.9349254","DOIUrl":null,"url":null,"abstract":"Old paintings are usually characterized by presence of damaged areas. This article presents technologies and methods for detection of the loss on old paintings using image processing, image segmentation techniques, and convolutional neural network for detection of damaged parts on painting. Analysis of model prediction results allows us to estimate the effectiveness of techniques and technologies, applied in this research in automated loss estimation.","PeriodicalId":312916,"journal":{"name":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Segmentation in Loss Detection for Conservation and Restoration of Old Paintings\",\"authors\":\"Roman A. Mykolaichuk, Vladyslav Lavrynovych, A. Mykolaichuk, Tetiana Tymchenko, Iryna Somyk-Ponomarenko\",\"doi\":\"10.1109/ATIT50783.2020.9349254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Old paintings are usually characterized by presence of damaged areas. This article presents technologies and methods for detection of the loss on old paintings using image processing, image segmentation techniques, and convolutional neural network for detection of damaged parts on painting. Analysis of model prediction results allows us to estimate the effectiveness of techniques and technologies, applied in this research in automated loss estimation.\",\"PeriodicalId\":312916,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATIT50783.2020.9349254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATIT50783.2020.9349254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

老画的特点通常是有破损的地方。本文介绍了利用图像处理技术、图像分割技术和卷积神经网络对老画破损部位进行检测的技术和方法。模型预测结果的分析使我们能够估计技术和技术的有效性,在本研究中应用于自动损失估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Segmentation in Loss Detection for Conservation and Restoration of Old Paintings
Old paintings are usually characterized by presence of damaged areas. This article presents technologies and methods for detection of the loss on old paintings using image processing, image segmentation techniques, and convolutional neural network for detection of damaged parts on painting. Analysis of model prediction results allows us to estimate the effectiveness of techniques and technologies, applied in this research in automated loss estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信