D. Bacciu, C. Gallicchio, A. Micheli, M. D. Rocco, A. Saffiotti
{"title":"在家庭环境中学习情境感知移动机器人导航","authors":"D. Bacciu, C. Gallicchio, A. Micheli, M. D. Rocco, A. Saffiotti","doi":"10.1109/IISA.2014.6878733","DOIUrl":null,"url":null,"abstract":"We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a real robot ecology, and show that the learning system can effectively exploit historical data about navigation performance to modify the models in the planner, without any prior information oncerning the phenomenon being modeled. The plans produced by the adapted CL fail more rarely than the ones generated by a non-adaptive planner. The distributed learning system handles the new learning task autonomously, and is able to automatically identify the sensorial information most relevant for the task, thus reducing the communication and computational overhead of the predictive task.","PeriodicalId":298835,"journal":{"name":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Learning context-aware mobile robot navigation in home environments\",\"authors\":\"D. Bacciu, C. Gallicchio, A. Micheli, M. D. Rocco, A. Saffiotti\",\"doi\":\"10.1109/IISA.2014.6878733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a real robot ecology, and show that the learning system can effectively exploit historical data about navigation performance to modify the models in the planner, without any prior information oncerning the phenomenon being modeled. The plans produced by the adapted CL fail more rarely than the ones generated by a non-adaptive planner. The distributed learning system handles the new learning task autonomously, and is able to automatically identify the sensorial information most relevant for the task, thus reducing the communication and computational overhead of the predictive task.\",\"PeriodicalId\":298835,\"journal\":{\"name\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2014.6878733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2014.6878733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning context-aware mobile robot navigation in home environments
We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a real robot ecology, and show that the learning system can effectively exploit historical data about navigation performance to modify the models in the planner, without any prior information oncerning the phenomenon being modeled. The plans produced by the adapted CL fail more rarely than the ones generated by a non-adaptive planner. The distributed learning system handles the new learning task autonomously, and is able to automatically identify the sensorial information most relevant for the task, thus reducing the communication and computational overhead of the predictive task.