流媒体视频中目标检测的高性能架构

P. Zemčík, Roman Juránek, Petr Musil, M. Musil, Michal Hradiš
{"title":"流媒体视频中目标检测的高性能架构","authors":"P. Zemčík, Roman Juránek, Petr Musil, M. Musil, Michal Hradiš","doi":"10.1109/FPL.2013.6645559","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel architecture of an engine for high performance multi-scale detection of objects in videos based on WaldBoost training algorithm. The key properties of the architecture include processing of streamed data and low resource consumption. We implemented the engine in FPGA and we show that it can process 640×480 pixel video streams at over 160 fps without the need of external memory. We evaluate the design on the face detection task, compare it to state of the art designs, and discuss its features and limitations.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"High performance architecture for object detection in streamed videos\",\"authors\":\"P. Zemčík, Roman Juránek, Petr Musil, M. Musil, Michal Hradiš\",\"doi\":\"10.1109/FPL.2013.6645559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel architecture of an engine for high performance multi-scale detection of objects in videos based on WaldBoost training algorithm. The key properties of the architecture include processing of streamed data and low resource consumption. We implemented the engine in FPGA and we show that it can process 640×480 pixel video streams at over 160 fps without the need of external memory. We evaluate the design on the face detection task, compare it to state of the art designs, and discuss its features and limitations.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了一种基于WaldBoost训练算法的高性能多尺度视频目标检测引擎的新架构。该架构的关键属性包括处理流数据和低资源消耗。我们在FPGA中实现了该引擎,并证明它可以在不需要外部存储器的情况下以超过160 fps的速度处理640×480像素视频流。我们评估了人脸检测任务的设计,将其与最先进的设计进行了比较,并讨论了其特点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High performance architecture for object detection in streamed videos
In this paper, we introduce a novel architecture of an engine for high performance multi-scale detection of objects in videos based on WaldBoost training algorithm. The key properties of the architecture include processing of streamed data and low resource consumption. We implemented the engine in FPGA and we show that it can process 640×480 pixel video streams at over 160 fps without the need of external memory. We evaluate the design on the face detection task, compare it to state of the art designs, and discuss its features and limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信