Rajib Uddin Rony, A. Gladen, Sarah Lavallie, J. Kientz
{"title":"为鳟鱼提供避难所的实验室规模热交换器原型的实验研究","authors":"Rajib Uddin Rony, A. Gladen, Sarah Lavallie, J. Kientz","doi":"10.1115/es2021-63934","DOIUrl":null,"url":null,"abstract":"\n In recent years Spring Creek in South Dakota, a popular fishing location, has been experiencing higher surface water temperatures, which negatively impact cold-water trout species. One potential solution is to provide localized refugia of colder water produced via active cooling. The present work focuses on the design and testing of a small-scale prototype heat exchanger, for such a cooling system. Various prototypes of the heat exchanger were tested in a 1/10th-scaled model of a section of the creek. A staggered, tube-bundle heat exchanger was used. The prototypes consisted of just the heat exchanger placed directly in the scaled-stream model and of the heat exchanger placed inside an enclosure with an aperture. The results show that, without the enclosure, the average temperature difference is 0.64 °C, with a corresponding heat transfer requirement of 1.63 kW/°C of cooling. However, with an enclosure, the average temperature difference is 1.95 °C, which required 0.59 kW/°C of cooling. Modifications to the enclosure decrease the average temperature difference but also decrease the standard deviation of the temperature difference. Thus, the cooling effect is more evenly spread throughout the water in the enclosure. This indicates that the enclosure design can be used to balance the requirements of obtaining a desired temperature difference with a relatively low spatial variation in that temperature difference. These results will be used to guide the design of the large-scale heat exchanger prototype.","PeriodicalId":256237,"journal":{"name":"ASME 2021 15th International Conference on Energy Sustainability","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Lab-Scale, Heat Exchanger Prototypes Designed to Provide Refugia for Trout\",\"authors\":\"Rajib Uddin Rony, A. Gladen, Sarah Lavallie, J. Kientz\",\"doi\":\"10.1115/es2021-63934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In recent years Spring Creek in South Dakota, a popular fishing location, has been experiencing higher surface water temperatures, which negatively impact cold-water trout species. One potential solution is to provide localized refugia of colder water produced via active cooling. The present work focuses on the design and testing of a small-scale prototype heat exchanger, for such a cooling system. Various prototypes of the heat exchanger were tested in a 1/10th-scaled model of a section of the creek. A staggered, tube-bundle heat exchanger was used. The prototypes consisted of just the heat exchanger placed directly in the scaled-stream model and of the heat exchanger placed inside an enclosure with an aperture. The results show that, without the enclosure, the average temperature difference is 0.64 °C, with a corresponding heat transfer requirement of 1.63 kW/°C of cooling. However, with an enclosure, the average temperature difference is 1.95 °C, which required 0.59 kW/°C of cooling. Modifications to the enclosure decrease the average temperature difference but also decrease the standard deviation of the temperature difference. Thus, the cooling effect is more evenly spread throughout the water in the enclosure. This indicates that the enclosure design can be used to balance the requirements of obtaining a desired temperature difference with a relatively low spatial variation in that temperature difference. These results will be used to guide the design of the large-scale heat exchanger prototype.\",\"PeriodicalId\":256237,\"journal\":{\"name\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2021-63934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 15th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2021-63934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Investigation of Lab-Scale, Heat Exchanger Prototypes Designed to Provide Refugia for Trout
In recent years Spring Creek in South Dakota, a popular fishing location, has been experiencing higher surface water temperatures, which negatively impact cold-water trout species. One potential solution is to provide localized refugia of colder water produced via active cooling. The present work focuses on the design and testing of a small-scale prototype heat exchanger, for such a cooling system. Various prototypes of the heat exchanger were tested in a 1/10th-scaled model of a section of the creek. A staggered, tube-bundle heat exchanger was used. The prototypes consisted of just the heat exchanger placed directly in the scaled-stream model and of the heat exchanger placed inside an enclosure with an aperture. The results show that, without the enclosure, the average temperature difference is 0.64 °C, with a corresponding heat transfer requirement of 1.63 kW/°C of cooling. However, with an enclosure, the average temperature difference is 1.95 °C, which required 0.59 kW/°C of cooling. Modifications to the enclosure decrease the average temperature difference but also decrease the standard deviation of the temperature difference. Thus, the cooling effect is more evenly spread throughout the water in the enclosure. This indicates that the enclosure design can be used to balance the requirements of obtaining a desired temperature difference with a relatively low spatial variation in that temperature difference. These results will be used to guide the design of the large-scale heat exchanger prototype.