为鳟鱼提供避难所的实验室规模热交换器原型的实验研究

Rajib Uddin Rony, A. Gladen, Sarah Lavallie, J. Kientz
{"title":"为鳟鱼提供避难所的实验室规模热交换器原型的实验研究","authors":"Rajib Uddin Rony, A. Gladen, Sarah Lavallie, J. Kientz","doi":"10.1115/es2021-63934","DOIUrl":null,"url":null,"abstract":"\n In recent years Spring Creek in South Dakota, a popular fishing location, has been experiencing higher surface water temperatures, which negatively impact cold-water trout species. One potential solution is to provide localized refugia of colder water produced via active cooling. The present work focuses on the design and testing of a small-scale prototype heat exchanger, for such a cooling system. Various prototypes of the heat exchanger were tested in a 1/10th-scaled model of a section of the creek. A staggered, tube-bundle heat exchanger was used. The prototypes consisted of just the heat exchanger placed directly in the scaled-stream model and of the heat exchanger placed inside an enclosure with an aperture. The results show that, without the enclosure, the average temperature difference is 0.64 °C, with a corresponding heat transfer requirement of 1.63 kW/°C of cooling. However, with an enclosure, the average temperature difference is 1.95 °C, which required 0.59 kW/°C of cooling. Modifications to the enclosure decrease the average temperature difference but also decrease the standard deviation of the temperature difference. Thus, the cooling effect is more evenly spread throughout the water in the enclosure. This indicates that the enclosure design can be used to balance the requirements of obtaining a desired temperature difference with a relatively low spatial variation in that temperature difference. These results will be used to guide the design of the large-scale heat exchanger prototype.","PeriodicalId":256237,"journal":{"name":"ASME 2021 15th International Conference on Energy Sustainability","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Lab-Scale, Heat Exchanger Prototypes Designed to Provide Refugia for Trout\",\"authors\":\"Rajib Uddin Rony, A. Gladen, Sarah Lavallie, J. Kientz\",\"doi\":\"10.1115/es2021-63934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In recent years Spring Creek in South Dakota, a popular fishing location, has been experiencing higher surface water temperatures, which negatively impact cold-water trout species. One potential solution is to provide localized refugia of colder water produced via active cooling. The present work focuses on the design and testing of a small-scale prototype heat exchanger, for such a cooling system. Various prototypes of the heat exchanger were tested in a 1/10th-scaled model of a section of the creek. A staggered, tube-bundle heat exchanger was used. The prototypes consisted of just the heat exchanger placed directly in the scaled-stream model and of the heat exchanger placed inside an enclosure with an aperture. The results show that, without the enclosure, the average temperature difference is 0.64 °C, with a corresponding heat transfer requirement of 1.63 kW/°C of cooling. However, with an enclosure, the average temperature difference is 1.95 °C, which required 0.59 kW/°C of cooling. Modifications to the enclosure decrease the average temperature difference but also decrease the standard deviation of the temperature difference. Thus, the cooling effect is more evenly spread throughout the water in the enclosure. This indicates that the enclosure design can be used to balance the requirements of obtaining a desired temperature difference with a relatively low spatial variation in that temperature difference. These results will be used to guide the design of the large-scale heat exchanger prototype.\",\"PeriodicalId\":256237,\"journal\":{\"name\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2021-63934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 15th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2021-63934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,南达科他州的春天溪,一个受欢迎的钓鱼地点,经历了更高的地表水温度,这对冷水鳟鱼物种产生了负面影响。一个潜在的解决方案是通过主动冷却提供局部的冷水避难所。目前的工作重点是设计和测试一个小型原型热交换器,用于这种冷却系统。热交换器的各种原型在1/10比例的小溪模型中进行了测试。采用了交错式管束换热器。原型包括直接放置在比例流模型中的热交换器和放置在带孔的外壳中的热交换器。结果表明,不加箱体时,平均温差为0.64℃,对应的冷却换热需求为1.63 kW/℃。但是,如果有一个机箱,平均温差为1.95℃,这需要0.59 kW/℃的冷却。对外壳的修改减小了平均温差,但也减小了温差的标准差。因此,冷却效果更均匀地分布在整个水的外壳。这表明,外壳设计可用于平衡获得所需温差的要求与该温差的相对较低的空间变化。这些结果将用于指导大型换热器原型的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Lab-Scale, Heat Exchanger Prototypes Designed to Provide Refugia for Trout
In recent years Spring Creek in South Dakota, a popular fishing location, has been experiencing higher surface water temperatures, which negatively impact cold-water trout species. One potential solution is to provide localized refugia of colder water produced via active cooling. The present work focuses on the design and testing of a small-scale prototype heat exchanger, for such a cooling system. Various prototypes of the heat exchanger were tested in a 1/10th-scaled model of a section of the creek. A staggered, tube-bundle heat exchanger was used. The prototypes consisted of just the heat exchanger placed directly in the scaled-stream model and of the heat exchanger placed inside an enclosure with an aperture. The results show that, without the enclosure, the average temperature difference is 0.64 °C, with a corresponding heat transfer requirement of 1.63 kW/°C of cooling. However, with an enclosure, the average temperature difference is 1.95 °C, which required 0.59 kW/°C of cooling. Modifications to the enclosure decrease the average temperature difference but also decrease the standard deviation of the temperature difference. Thus, the cooling effect is more evenly spread throughout the water in the enclosure. This indicates that the enclosure design can be used to balance the requirements of obtaining a desired temperature difference with a relatively low spatial variation in that temperature difference. These results will be used to guide the design of the large-scale heat exchanger prototype.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信