基于边缘计算的对虾养殖智能监控系统的应用与开发

Tien-Sheng Lin, Ta-Jen Chu, Y. Shih, Jung-Kuei Yang, Jun Wan, Xueren Lin
{"title":"基于边缘计算的对虾养殖智能监控系统的应用与开发","authors":"Tien-Sheng Lin, Ta-Jen Chu, Y. Shih, Jung-Kuei Yang, Jun Wan, Xueren Lin","doi":"10.1109/icaceh54312.2021.9768844","DOIUrl":null,"url":null,"abstract":"Convolutional neural network (CNN) and machine deep learning are used to analyze the required static parameters of the growth environment of shrimp farming. Using the parameters, the intelligent monitoring system analyzes the needs of different shrimp larvae with different growth environments. Image recognition technology and the collection of sensor data are used to control various dynamic parameters, such as feeding, growth, movement, and accident warning. The edge computing of the proposed system can improve the efficiency of shrimp farming production and avoid accidental injuries caused by emergency accidents.","PeriodicalId":359434,"journal":{"name":"2021 IEEE 3rd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application and Development of Shrimp Farming Intelligent Monitoring System on Edge Computing\",\"authors\":\"Tien-Sheng Lin, Ta-Jen Chu, Y. Shih, Jung-Kuei Yang, Jun Wan, Xueren Lin\",\"doi\":\"10.1109/icaceh54312.2021.9768844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural network (CNN) and machine deep learning are used to analyze the required static parameters of the growth environment of shrimp farming. Using the parameters, the intelligent monitoring system analyzes the needs of different shrimp larvae with different growth environments. Image recognition technology and the collection of sensor data are used to control various dynamic parameters, such as feeding, growth, movement, and accident warning. The edge computing of the proposed system can improve the efficiency of shrimp farming production and avoid accidental injuries caused by emergency accidents.\",\"PeriodicalId\":359434,\"journal\":{\"name\":\"2021 IEEE 3rd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 3rd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaceh54312.2021.9768844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaceh54312.2021.9768844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用卷积神经网络(CNN)和机器深度学习分析对虾养殖生长环境所需的静态参数。利用这些参数,智能监测系统分析了不同虾仔在不同生长环境下的需求。图像识别技术和传感器数据的收集用于控制各种动态参数,如喂养,生长,运动和事故预警。该系统的边缘计算可以提高对虾养殖生产效率,避免突发事故造成的意外伤害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application and Development of Shrimp Farming Intelligent Monitoring System on Edge Computing
Convolutional neural network (CNN) and machine deep learning are used to analyze the required static parameters of the growth environment of shrimp farming. Using the parameters, the intelligent monitoring system analyzes the needs of different shrimp larvae with different growth environments. Image recognition technology and the collection of sensor data are used to control various dynamic parameters, such as feeding, growth, movement, and accident warning. The edge computing of the proposed system can improve the efficiency of shrimp farming production and avoid accidental injuries caused by emergency accidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信