使用基于puf的逻辑进行硬件混淆

James Bradley Wendt, M. Potkonjak
{"title":"使用基于puf的逻辑进行硬件混淆","authors":"James Bradley Wendt, M. Potkonjak","doi":"10.1109/ICCAD.2014.7001362","DOIUrl":null,"url":null,"abstract":"There is a great need to develop universal and robust techniques for intellectual property protection of integrated circuits. In this paper, we introduce techniques for the obfuscation of an arbitrary circuit by using physical unclonable functions (PUFs) and programmable logic. Specifically, we introduce the notion of PUF-based logic which can be configured to be functionally equivalent to any arbitrary design, as well as a new architecture for wire merging that obfuscates signal paths exponentially. We systematically apply our techniques in such a way so as to maximize obfuscation while minimizing area and delay overhead. We analyze our techniques on popular benchmark circuits and show them to be resilient against very powerful reverse engineering attacks in which the adversary has knowledge of the complete netlist along with the ability to read and write to any flip-flop in the circuit.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Hardware obfuscation using PUF-based logic\",\"authors\":\"James Bradley Wendt, M. Potkonjak\",\"doi\":\"10.1109/ICCAD.2014.7001362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a great need to develop universal and robust techniques for intellectual property protection of integrated circuits. In this paper, we introduce techniques for the obfuscation of an arbitrary circuit by using physical unclonable functions (PUFs) and programmable logic. Specifically, we introduce the notion of PUF-based logic which can be configured to be functionally equivalent to any arbitrary design, as well as a new architecture for wire merging that obfuscates signal paths exponentially. We systematically apply our techniques in such a way so as to maximize obfuscation while minimizing area and delay overhead. We analyze our techniques on popular benchmark circuits and show them to be resilient against very powerful reverse engineering attacks in which the adversary has knowledge of the complete netlist along with the ability to read and write to any flip-flop in the circuit.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

集成电路的知识产权保护迫切需要开发通用的、可靠的技术。在本文中,我们介绍了利用物理不可克隆函数(puf)和可编程逻辑来混淆任意电路的技术。具体来说,我们引入了基于puf的逻辑概念,该概念可以配置为在功能上等同于任何任意设计,以及用于线合并的新架构,该架构可以指数级地混淆信号路径。我们系统地以这样的方式应用我们的技术,以便最大限度地混淆,同时最小化面积和延迟开销。我们在流行的基准电路上分析了我们的技术,并展示了它们对非常强大的反向工程攻击的弹性,在这种攻击中,攻击者了解完整的网络列表,并且能够读写电路中的任何触发器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware obfuscation using PUF-based logic
There is a great need to develop universal and robust techniques for intellectual property protection of integrated circuits. In this paper, we introduce techniques for the obfuscation of an arbitrary circuit by using physical unclonable functions (PUFs) and programmable logic. Specifically, we introduce the notion of PUF-based logic which can be configured to be functionally equivalent to any arbitrary design, as well as a new architecture for wire merging that obfuscates signal paths exponentially. We systematically apply our techniques in such a way so as to maximize obfuscation while minimizing area and delay overhead. We analyze our techniques on popular benchmark circuits and show them to be resilient against very powerful reverse engineering attacks in which the adversary has knowledge of the complete netlist along with the ability to read and write to any flip-flop in the circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信