{"title":"基于数学形态学的自适应单相重合闸算法","authors":"T. Zheng, Min Liu, G. Preston, V. Terzija","doi":"10.1109/CRIS.2010.5617548","DOIUrl":null,"url":null,"abstract":"Single-phase Auto-reclosing (SPAR) is widely used on EHV/UHV transmission lines to improve power system reliability. However, reclosing on to a permanent fault can adversely affect the system stability and damage generators and other equipment connected to the line. To solve this problem, a new algorithm for improving the single-phase adaptive autoreclosure is presented in this paper. Firstly, primary and secondary arc models are introduced, then a series of simulations are carried out based on the arc models. By analyzing the simulation results, a new method to discriminate between transient faults and permanent faults is proposed. Since fault arcs are associated with transient faults, and the frequent re-ignitions of the secondary arc cause distortions in the line voltage, a reliable single-phase autoreclosure can be achieved by measuring the distortion in the line voltage waveform. In order to improve the distortion detection, Multi-resolution Morphological Gradient (MMG) has been adopted. Finally, numerous simulation results show that the algorithm proposed in this paper can be used as an effective tool for realizing the SPAR.","PeriodicalId":206094,"journal":{"name":"2010 5th International Conference on Critical Infrastructure (CRIS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An adaptive single phase reclosing algorithm based on the mathematical morphology\",\"authors\":\"T. Zheng, Min Liu, G. Preston, V. Terzija\",\"doi\":\"10.1109/CRIS.2010.5617548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-phase Auto-reclosing (SPAR) is widely used on EHV/UHV transmission lines to improve power system reliability. However, reclosing on to a permanent fault can adversely affect the system stability and damage generators and other equipment connected to the line. To solve this problem, a new algorithm for improving the single-phase adaptive autoreclosure is presented in this paper. Firstly, primary and secondary arc models are introduced, then a series of simulations are carried out based on the arc models. By analyzing the simulation results, a new method to discriminate between transient faults and permanent faults is proposed. Since fault arcs are associated with transient faults, and the frequent re-ignitions of the secondary arc cause distortions in the line voltage, a reliable single-phase autoreclosure can be achieved by measuring the distortion in the line voltage waveform. In order to improve the distortion detection, Multi-resolution Morphological Gradient (MMG) has been adopted. Finally, numerous simulation results show that the algorithm proposed in this paper can be used as an effective tool for realizing the SPAR.\",\"PeriodicalId\":206094,\"journal\":{\"name\":\"2010 5th International Conference on Critical Infrastructure (CRIS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Conference on Critical Infrastructure (CRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRIS.2010.5617548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Conference on Critical Infrastructure (CRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRIS.2010.5617548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive single phase reclosing algorithm based on the mathematical morphology
Single-phase Auto-reclosing (SPAR) is widely used on EHV/UHV transmission lines to improve power system reliability. However, reclosing on to a permanent fault can adversely affect the system stability and damage generators and other equipment connected to the line. To solve this problem, a new algorithm for improving the single-phase adaptive autoreclosure is presented in this paper. Firstly, primary and secondary arc models are introduced, then a series of simulations are carried out based on the arc models. By analyzing the simulation results, a new method to discriminate between transient faults and permanent faults is proposed. Since fault arcs are associated with transient faults, and the frequent re-ignitions of the secondary arc cause distortions in the line voltage, a reliable single-phase autoreclosure can be achieved by measuring the distortion in the line voltage waveform. In order to improve the distortion detection, Multi-resolution Morphological Gradient (MMG) has been adopted. Finally, numerous simulation results show that the algorithm proposed in this paper can be used as an effective tool for realizing the SPAR.