集中绕组同步磁阻电机设计的关键因素

T. Lange, C. Weiss, R. D. De Doncker
{"title":"集中绕组同步磁阻电机设计的关键因素","authors":"T. Lange, C. Weiss, R. D. De Doncker","doi":"10.1109/PEDS.2017.8289207","DOIUrl":null,"url":null,"abstract":"This paper presents the key factors to designing a synchronous reluctance machine with concentrated windings. For synchronous machines the stator and pole configuration is commonly chosen according to the highest winding factor and lowest air-gap leakage factor. However, this does not always lead to the best machine. Due to the discrete field distribution of concentrated tooth windings, the air-gap harmonic content increases. This results in a high leakage inductance and a high leakage factor and consequently in a low saliency ratio of the machine. In addition to the theory of winding- and air-gap leakage factors for synchronous machines this paper introduces an analytic torque factor which is valid for all stator and rotor configurations. The torque factor describes the rotor pole utilization depending on the winding configuration. The presented discussion is based on analytic equations and finite element simulations of two segmented synchronous reluctance machines.","PeriodicalId":411916,"journal":{"name":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Key factors for the design of synchronous reluctance machines with concentrated windings\",\"authors\":\"T. Lange, C. Weiss, R. D. De Doncker\",\"doi\":\"10.1109/PEDS.2017.8289207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the key factors to designing a synchronous reluctance machine with concentrated windings. For synchronous machines the stator and pole configuration is commonly chosen according to the highest winding factor and lowest air-gap leakage factor. However, this does not always lead to the best machine. Due to the discrete field distribution of concentrated tooth windings, the air-gap harmonic content increases. This results in a high leakage inductance and a high leakage factor and consequently in a low saliency ratio of the machine. In addition to the theory of winding- and air-gap leakage factors for synchronous machines this paper introduces an analytic torque factor which is valid for all stator and rotor configurations. The torque factor describes the rotor pole utilization depending on the winding configuration. The presented discussion is based on analytic equations and finite element simulations of two segmented synchronous reluctance machines.\",\"PeriodicalId\":411916,\"journal\":{\"name\":\"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDS.2017.8289207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.2017.8289207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了设计集中绕组同步磁阻电机的关键因素。对于同步电机,通常根据最高绕组系数和最低气隙泄漏系数来选择定子和极的配置。然而,这并不总是导致最好的机器。由于集中齿绕组的场分布离散,气隙谐波含量增加。这导致高泄漏电感和高泄漏系数,从而导致机器的低显着比。本文在介绍同步电机绕组和气隙泄漏因数理论的基础上,提出了一种适用于所有定子和转子结构的解析式转矩因数。转矩因子描述了转子极的利用率取决于绕组的配置。本文的讨论是基于解析方程和有限元模拟的两个分段同步磁阻电机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Key factors for the design of synchronous reluctance machines with concentrated windings
This paper presents the key factors to designing a synchronous reluctance machine with concentrated windings. For synchronous machines the stator and pole configuration is commonly chosen according to the highest winding factor and lowest air-gap leakage factor. However, this does not always lead to the best machine. Due to the discrete field distribution of concentrated tooth windings, the air-gap harmonic content increases. This results in a high leakage inductance and a high leakage factor and consequently in a low saliency ratio of the machine. In addition to the theory of winding- and air-gap leakage factors for synchronous machines this paper introduces an analytic torque factor which is valid for all stator and rotor configurations. The torque factor describes the rotor pole utilization depending on the winding configuration. The presented discussion is based on analytic equations and finite element simulations of two segmented synchronous reluctance machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信