基于多入射角的L波段和X波段雷达后向散射雪深反演算法

F. Mazeh, Bilal Hammoud, H. Ayad, F. Ndagijimana, G. Faour, M. Fadlallah, J. Jomaah
{"title":"基于多入射角的L波段和X波段雷达后向散射雪深反演算法","authors":"F. Mazeh, Bilal Hammoud, H. Ayad, F. Ndagijimana, G. Faour, M. Fadlallah, J. Jomaah","doi":"10.1109/HPCS.2018.00021","DOIUrl":null,"url":null,"abstract":"The objective of this work is to develop an algorithm to estimate snow thickness over ground from backscattering measurements at L- and X-band (1.5 and 10 GHz) using multi incidence angles (0°, 10° and 30°). The return signal from the medium is due to the ground roughness, the snow volume, and the noise from the radar system. So, surface and volume scattering effects are modeled from physics forward models, and noise effects are modeled by including a white Gaussian noise into the simulation. This inversion algorithm involves two steps. The first is to estimate snow density using L-band co-polarized backscattering coefficient. The second is to estimate the snow depth from X-band co-polarized backscattering coefficients using dual incidence angles. For a 0.02 noise variance, all retrieved values have an error less than 2% for a snow depth range of [50-300] cm.","PeriodicalId":308138,"journal":{"name":"2018 International Conference on High Performance Computing & Simulation (HPCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Snow Depth Retrieval Algorithm from Radar Backscattering Measurements at L- and X- Band Using Multi-Incidence Angles\",\"authors\":\"F. Mazeh, Bilal Hammoud, H. Ayad, F. Ndagijimana, G. Faour, M. Fadlallah, J. Jomaah\",\"doi\":\"10.1109/HPCS.2018.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to develop an algorithm to estimate snow thickness over ground from backscattering measurements at L- and X-band (1.5 and 10 GHz) using multi incidence angles (0°, 10° and 30°). The return signal from the medium is due to the ground roughness, the snow volume, and the noise from the radar system. So, surface and volume scattering effects are modeled from physics forward models, and noise effects are modeled by including a white Gaussian noise into the simulation. This inversion algorithm involves two steps. The first is to estimate snow density using L-band co-polarized backscattering coefficient. The second is to estimate the snow depth from X-band co-polarized backscattering coefficients using dual incidence angles. For a 0.02 noise variance, all retrieved values have an error less than 2% for a snow depth range of [50-300] cm.\",\"PeriodicalId\":308138,\"journal\":{\"name\":\"2018 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS.2018.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目标是开发一种算法,利用多入射角(0°,10°和30°),从L和x波段(1.5 GHz和10 GHz)的后向散射测量中估计地面积雪厚度。来自介质的返回信号受地面粗糙度、雪量和雷达系统噪声的影响。因此,从物理正演模型中模拟表面和体积散射效应,并通过在仿真中加入高斯白噪声来模拟噪声效应。这种反演算法包括两个步骤。一是利用l波段共极化后向散射系数估算雪密度。二是利用双入射角从x波段共极化后向散射系数估计雪深。对于0.02的噪声方差,对于[50-300]cm的雪深范围,所有检索值的误差小于2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Snow Depth Retrieval Algorithm from Radar Backscattering Measurements at L- and X- Band Using Multi-Incidence Angles
The objective of this work is to develop an algorithm to estimate snow thickness over ground from backscattering measurements at L- and X-band (1.5 and 10 GHz) using multi incidence angles (0°, 10° and 30°). The return signal from the medium is due to the ground roughness, the snow volume, and the noise from the radar system. So, surface and volume scattering effects are modeled from physics forward models, and noise effects are modeled by including a white Gaussian noise into the simulation. This inversion algorithm involves two steps. The first is to estimate snow density using L-band co-polarized backscattering coefficient. The second is to estimate the snow depth from X-band co-polarized backscattering coefficients using dual incidence angles. For a 0.02 noise variance, all retrieved values have an error less than 2% for a snow depth range of [50-300] cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信