{"title":"p-n结阵列的热功率增强和最佳ZT","authors":"A. Zakhidov, Y. Ravich, D.A. Pchenoy-Severin","doi":"10.1109/ICT.1999.843366","DOIUrl":null,"url":null,"abstract":"Thermoelectric effects in different types of p-n junction systems are considered theoretically, and the thermoelectric power S is calculated in a rigorous approximation. S for a single p-n junction is found to be rather large, due to the thermal factor E/sub g//kT (E/sub g/ being the band gap). This factor naturally appears in the expression for S for an asymmetric junction, and cancels from S for a symmetric junction. The thermopower of individual p-n junctions (S/sub n/) add for an array of in-series junctions (-p-n-p-n-p-...), and this result may be used for the enhancement of the Seebeck coefficient in opal-type 3-D superlattices. The figure of merit ZT of the p-n junction system is shown to have an upper bound of 1.","PeriodicalId":253439,"journal":{"name":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Thermopower enhancement and optimal ZT in p-n junction arrays\",\"authors\":\"A. Zakhidov, Y. Ravich, D.A. Pchenoy-Severin\",\"doi\":\"10.1109/ICT.1999.843366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoelectric effects in different types of p-n junction systems are considered theoretically, and the thermoelectric power S is calculated in a rigorous approximation. S for a single p-n junction is found to be rather large, due to the thermal factor E/sub g//kT (E/sub g/ being the band gap). This factor naturally appears in the expression for S for an asymmetric junction, and cancels from S for a symmetric junction. The thermopower of individual p-n junctions (S/sub n/) add for an array of in-series junctions (-p-n-p-n-p-...), and this result may be used for the enhancement of the Seebeck coefficient in opal-type 3-D superlattices. The figure of merit ZT of the p-n junction system is shown to have an upper bound of 1.\",\"PeriodicalId\":253439,\"journal\":{\"name\":\"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1999.843366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1999.843366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermopower enhancement and optimal ZT in p-n junction arrays
Thermoelectric effects in different types of p-n junction systems are considered theoretically, and the thermoelectric power S is calculated in a rigorous approximation. S for a single p-n junction is found to be rather large, due to the thermal factor E/sub g//kT (E/sub g/ being the band gap). This factor naturally appears in the expression for S for an asymmetric junction, and cancels from S for a symmetric junction. The thermopower of individual p-n junctions (S/sub n/) add for an array of in-series junctions (-p-n-p-n-p-...), and this result may be used for the enhancement of the Seebeck coefficient in opal-type 3-D superlattices. The figure of merit ZT of the p-n junction system is shown to have an upper bound of 1.