基于改进局部图结构的人脸欺骗检测

Khalifa Bashier Housam, S. Lau, Ying-Han Pang, Yee Ping Liew, M. Chiang
{"title":"基于改进局部图结构的人脸欺骗检测","authors":"Khalifa Bashier Housam, S. Lau, Ying-Han Pang, Yee Ping Liew, M. Chiang","doi":"10.1109/ICISA.2014.6847399","DOIUrl":null,"url":null,"abstract":"Face spoofing attack is one of the recent security problems that face recognition systems are proven to be vulnerable to. The spoofing occurs when an attacker bypass the authentication scheme by presenting a copy of the face image for a valid user. Therefore, it's very easy to perform a face recognition spoofing attack with compare to other biometrics. This paper, presents a novel and efficient facial image representation for face spoofing called improved local graph structure (ILGS). We divide the input facial image into several regions and then we calculate local graph structure (LGS) codes for each region. On the other hand, the histograms are concatenated into an enhanced feature vector to detect spoofed facial image. Finally, performance of the proposed method is evaluated on the NUAA database.","PeriodicalId":117185,"journal":{"name":"2014 International Conference on Information Science & Applications (ICISA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Face Spoofing Detection Based on Improved Local Graph Structure\",\"authors\":\"Khalifa Bashier Housam, S. Lau, Ying-Han Pang, Yee Ping Liew, M. Chiang\",\"doi\":\"10.1109/ICISA.2014.6847399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face spoofing attack is one of the recent security problems that face recognition systems are proven to be vulnerable to. The spoofing occurs when an attacker bypass the authentication scheme by presenting a copy of the face image for a valid user. Therefore, it's very easy to perform a face recognition spoofing attack with compare to other biometrics. This paper, presents a novel and efficient facial image representation for face spoofing called improved local graph structure (ILGS). We divide the input facial image into several regions and then we calculate local graph structure (LGS) codes for each region. On the other hand, the histograms are concatenated into an enhanced feature vector to detect spoofed facial image. Finally, performance of the proposed method is evaluated on the NUAA database.\",\"PeriodicalId\":117185,\"journal\":{\"name\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2014.6847399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Science & Applications (ICISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2014.6847399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

人脸欺骗攻击是近年来人脸识别系统最容易受到攻击的安全问题之一。当攻击者通过向有效用户提供面部图像的副本来绕过身份验证方案时,就会发生欺骗。因此,与其他生物识别技术相比,人脸识别技术很容易进行欺骗攻击。本文提出了一种新颖高效的人脸欺骗图像表示方法——改进局部图结构(ILGS)。我们将输入的人脸图像分成几个区域,然后为每个区域计算局部图结构(LGS)编码。另一方面,直方图被连接成一个增强的特征向量来检测欺骗的面部图像。最后,在NUAA数据库上对该方法进行了性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Spoofing Detection Based on Improved Local Graph Structure
Face spoofing attack is one of the recent security problems that face recognition systems are proven to be vulnerable to. The spoofing occurs when an attacker bypass the authentication scheme by presenting a copy of the face image for a valid user. Therefore, it's very easy to perform a face recognition spoofing attack with compare to other biometrics. This paper, presents a novel and efficient facial image representation for face spoofing called improved local graph structure (ILGS). We divide the input facial image into several regions and then we calculate local graph structure (LGS) codes for each region. On the other hand, the histograms are concatenated into an enhanced feature vector to detect spoofed facial image. Finally, performance of the proposed method is evaluated on the NUAA database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信