基于迟滞阈值和多模型的运动目标检测中的空洞问题

Chin-Yang Lin, Wei-Wen Chang, Panyaporn Prangjarote, C. Yeh, Guo-Shiang Lin
{"title":"基于迟滞阈值和多模型的运动目标检测中的空洞问题","authors":"Chin-Yang Lin, Wei-Wen Chang, Panyaporn Prangjarote, C. Yeh, Guo-Shiang Lin","doi":"10.1109/ISCE.2013.6570179","DOIUrl":null,"url":null,"abstract":"Traditional background modeling methods often require complicated computations and suffer from cavity problems in foreground objects. In this paper, we propose a block-based background modeling method combining multiple detection results derived from color and texture characteristics. This method can significantly alleviate the cavity problem and resist certain shadow interference. Since the proposed scheme only requires low complexity, it is suitable for real-time applications.","PeriodicalId":442380,"journal":{"name":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alleviating cavity problems in moving object detection based on hysteresis thresholding and multi-models\",\"authors\":\"Chin-Yang Lin, Wei-Wen Chang, Panyaporn Prangjarote, C. Yeh, Guo-Shiang Lin\",\"doi\":\"10.1109/ISCE.2013.6570179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional background modeling methods often require complicated computations and suffer from cavity problems in foreground objects. In this paper, we propose a block-based background modeling method combining multiple detection results derived from color and texture characteristics. This method can significantly alleviate the cavity problem and resist certain shadow interference. Since the proposed scheme only requires low complexity, it is suitable for real-time applications.\",\"PeriodicalId\":442380,\"journal\":{\"name\":\"2013 IEEE International Symposium on Consumer Electronics (ISCE)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Consumer Electronics (ISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2013.6570179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2013.6570179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的背景建模方法计算量大,且前景对象存在空腔问题。在本文中,我们提出了一种基于块的背景建模方法,该方法结合了由颜色和纹理特征得出的多个检测结果。该方法能显著缓解空腔问题,并能抵抗一定的阴影干扰。由于该方案对复杂度要求较低,适合实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alleviating cavity problems in moving object detection based on hysteresis thresholding and multi-models
Traditional background modeling methods often require complicated computations and suffer from cavity problems in foreground objects. In this paper, we propose a block-based background modeling method combining multiple detection results derived from color and texture characteristics. This method can significantly alleviate the cavity problem and resist certain shadow interference. Since the proposed scheme only requires low complexity, it is suitable for real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信