基于fpga的CNN推理加速器,由多线程C软件合成

Jin Hee Kim, Brett Grady, Ruolong Lian, J. Brothers, J. Anderson
{"title":"基于fpga的CNN推理加速器,由多线程C软件合成","authors":"Jin Hee Kim, Brett Grady, Ruolong Lian, J. Brothers, J. Anderson","doi":"10.1109/SOCC.2017.8226056","DOIUrl":null,"url":null,"abstract":"A deep-learning inference accelerator is synthesized from a C-language software program parallelized with Pthreads. The software implementation uses the well-known producer/consumer model with parallel threads interconnected by FIFO queues. The LegUp high-level synthesis (HLS) [1] tool synthesizes threads into parallel FPGA hardware, translating software parallelism into spatial parallelism. A complete system is generated where convolution, pooling and padding are realized in the synthesized accelerator, with remaining tasks executing on an embedded ARM processor. The accelerator incorporates reduced precision, and a novel approach for zero-weight-skipping in convolution. On a mid-sized Intel Arria 10 SoC FPGA, peak performance on VGG-16 is 138 effective GOPS.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"FPGA-based CNN inference accelerator synthesized from multi-threaded C software\",\"authors\":\"Jin Hee Kim, Brett Grady, Ruolong Lian, J. Brothers, J. Anderson\",\"doi\":\"10.1109/SOCC.2017.8226056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep-learning inference accelerator is synthesized from a C-language software program parallelized with Pthreads. The software implementation uses the well-known producer/consumer model with parallel threads interconnected by FIFO queues. The LegUp high-level synthesis (HLS) [1] tool synthesizes threads into parallel FPGA hardware, translating software parallelism into spatial parallelism. A complete system is generated where convolution, pooling and padding are realized in the synthesized accelerator, with remaining tasks executing on an embedded ARM processor. The accelerator incorporates reduced precision, and a novel approach for zero-weight-skipping in convolution. On a mid-sized Intel Arria 10 SoC FPGA, peak performance on VGG-16 is 138 effective GOPS.\",\"PeriodicalId\":366264,\"journal\":{\"name\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2017.8226056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8226056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

利用并行化的c语言软件程序合成了一个深度学习推理加速器。软件实现使用著名的生产者/消费者模型,并行线程通过FIFO队列相互连接。LegUp高级综合(HLS)[1]工具将线程合成为并行FPGA硬件,将软件并行性转化为空间并行性。生成了一个完整的系统,其中卷积、池化和填充在合成加速器中实现,其余任务在嵌入式ARM处理器上执行。该加速器结合了降低的精度,以及一种在卷积中实现零权重跳跃的新方法。在中型英特尔Arria 10 SoC FPGA上,VGG-16的峰值性能为138有效GOPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based CNN inference accelerator synthesized from multi-threaded C software
A deep-learning inference accelerator is synthesized from a C-language software program parallelized with Pthreads. The software implementation uses the well-known producer/consumer model with parallel threads interconnected by FIFO queues. The LegUp high-level synthesis (HLS) [1] tool synthesizes threads into parallel FPGA hardware, translating software parallelism into spatial parallelism. A complete system is generated where convolution, pooling and padding are realized in the synthesized accelerator, with remaining tasks executing on an embedded ARM processor. The accelerator incorporates reduced precision, and a novel approach for zero-weight-skipping in convolution. On a mid-sized Intel Arria 10 SoC FPGA, peak performance on VGG-16 is 138 effective GOPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信