{"title":"一种采用差分电流传送带的高增益、低偏置电流模式仪表放大器","authors":"U. Çini, E. Arslan","doi":"10.1109/ICECS.2015.7440251","DOIUrl":null,"url":null,"abstract":"In this work, a current-mode high CMRR and low offset instrumentation amplifier is proposed. In the structure, only differential difference current conveyors (DDCC) are employed. The offset of the instrumentation amplifier is suppressed using an integrator feedback stage. The CMRR of the system is simulated using mismatch models for the DDCC elements employed. The CMRR of the instrumentation amplifier is independent of resistor mismatches and high CMRR is achieved if good matching of the differential transistors of each current conveyor is provided. The proposed instrumentation amplifier is designed using 0.35μm technology and simulated using HSPICE. The designed instrumentation amplifier provides high CMRR with low offset and it is especially suitable for AC coupled measurements. The simplicity of the design structure is the main advantage of the provided design where only DDCC elements are required for high CMRR and high output swing.","PeriodicalId":215448,"journal":{"name":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A high gain and low-offset current-mode instrumentation amplifier using differential difference current conveyors\",\"authors\":\"U. Çini, E. Arslan\",\"doi\":\"10.1109/ICECS.2015.7440251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a current-mode high CMRR and low offset instrumentation amplifier is proposed. In the structure, only differential difference current conveyors (DDCC) are employed. The offset of the instrumentation amplifier is suppressed using an integrator feedback stage. The CMRR of the system is simulated using mismatch models for the DDCC elements employed. The CMRR of the instrumentation amplifier is independent of resistor mismatches and high CMRR is achieved if good matching of the differential transistors of each current conveyor is provided. The proposed instrumentation amplifier is designed using 0.35μm technology and simulated using HSPICE. The designed instrumentation amplifier provides high CMRR with low offset and it is especially suitable for AC coupled measurements. The simplicity of the design structure is the main advantage of the provided design where only DDCC elements are required for high CMRR and high output swing.\",\"PeriodicalId\":215448,\"journal\":{\"name\":\"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2015.7440251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2015.7440251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high gain and low-offset current-mode instrumentation amplifier using differential difference current conveyors
In this work, a current-mode high CMRR and low offset instrumentation amplifier is proposed. In the structure, only differential difference current conveyors (DDCC) are employed. The offset of the instrumentation amplifier is suppressed using an integrator feedback stage. The CMRR of the system is simulated using mismatch models for the DDCC elements employed. The CMRR of the instrumentation amplifier is independent of resistor mismatches and high CMRR is achieved if good matching of the differential transistors of each current conveyor is provided. The proposed instrumentation amplifier is designed using 0.35μm technology and simulated using HSPICE. The designed instrumentation amplifier provides high CMRR with low offset and it is especially suitable for AC coupled measurements. The simplicity of the design structure is the main advantage of the provided design where only DDCC elements are required for high CMRR and high output swing.