训练分割神经网络的数据平衡方法

Alexey Kochkarev, A. Khvostikov, Dmitry Korshunov, A. Krylov, M. Boguslavskiy
{"title":"训练分割神经网络的数据平衡方法","authors":"Alexey Kochkarev, A. Khvostikov, Dmitry Korshunov, A. Krylov, M. Boguslavskiy","doi":"10.51130/graphicon-2020-2-4-19","DOIUrl":null,"url":null,"abstract":"Data imbalance is a common problem in machine learning and image processing. The lack of training data for the rarest classes can lead to worse learning ability and negatively affect the quality of segmentation. In this paper, we focus on the problem of data balancing for the task of image segmentation. We review major trends in handling unbalanced data and propose a new method for data balancing, based on Distance Transform. This method is designed for using in segmentation convolutional neural networks (CNNs), but it is universal and can be used with any patch-based segmentation machine learning model. The evaluation of the proposed data balancing method is performed on two datasets. The first is medical dataset LiTS, containing CT images of liver with tumor abnormalities. The second one is a geological dataset, containing of photographs of polished sections of different ores. The proposed algorithm enhances the data balance between classes and improves the overall performance of CNN model.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"68 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data Balancing Method for Training Segmentation Neural Networks\",\"authors\":\"Alexey Kochkarev, A. Khvostikov, Dmitry Korshunov, A. Krylov, M. Boguslavskiy\",\"doi\":\"10.51130/graphicon-2020-2-4-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data imbalance is a common problem in machine learning and image processing. The lack of training data for the rarest classes can lead to worse learning ability and negatively affect the quality of segmentation. In this paper, we focus on the problem of data balancing for the task of image segmentation. We review major trends in handling unbalanced data and propose a new method for data balancing, based on Distance Transform. This method is designed for using in segmentation convolutional neural networks (CNNs), but it is universal and can be used with any patch-based segmentation machine learning model. The evaluation of the proposed data balancing method is performed on two datasets. The first is medical dataset LiTS, containing CT images of liver with tumor abnormalities. The second one is a geological dataset, containing of photographs of polished sections of different ores. The proposed algorithm enhances the data balance between classes and improves the overall performance of CNN model.\",\"PeriodicalId\":344054,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"volume\":\"68 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51130/graphicon-2020-2-4-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-4-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据不平衡是机器学习和图像处理中常见的问题。缺乏对最稀有类的训练数据会导致学习能力变差,并对分割质量产生负面影响。本文主要研究图像分割任务中的数据平衡问题。我们回顾了处理不平衡数据的主要趋势,并提出了一种基于距离变换的数据平衡新方法。该方法是为分割卷积神经网络(cnn)设计的,但它是通用的,可以用于任何基于补丁的分割机器学习模型。在两个数据集上对所提出的数据平衡方法进行了评估。第一个是医学数据集LiTS,包含肝脏肿瘤异常的CT图像。第二个是地质数据集,包含不同矿石抛光部分的照片。该算法增强了类间数据的平衡性,提高了CNN模型的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Balancing Method for Training Segmentation Neural Networks
Data imbalance is a common problem in machine learning and image processing. The lack of training data for the rarest classes can lead to worse learning ability and negatively affect the quality of segmentation. In this paper, we focus on the problem of data balancing for the task of image segmentation. We review major trends in handling unbalanced data and propose a new method for data balancing, based on Distance Transform. This method is designed for using in segmentation convolutional neural networks (CNNs), but it is universal and can be used with any patch-based segmentation machine learning model. The evaluation of the proposed data balancing method is performed on two datasets. The first is medical dataset LiTS, containing CT images of liver with tumor abnormalities. The second one is a geological dataset, containing of photographs of polished sections of different ores. The proposed algorithm enhances the data balance between classes and improves the overall performance of CNN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信