{"title":"直觉半模糊神经网络的输入空间选择模糊化","authors":"M. Terziyska, Y. Todorov, M. Olteanu","doi":"10.1109/ECAI.2016.7861093","DOIUrl":null,"url":null,"abstract":"In this paper, the influence of the selective fuzzification of the input space in Intuitionistic Semi-Fuzzy Neural Network (ISFNN) is investigated. The ISFNN represents a structure modification of the classical fuzzy-neural approach where selective fuzzification as a means to reduce the number of the generated fuzzy rules is proposed, thus expected to reduce the number of the associated learning parameters and to achieve a degree of computational simplicity. On the other hand, the potentials of the network are supplemented by intuitionistic fuzzy logic, in order to handle uncertain data variations. As a learning procedure for the proposed structure, a two-step gradient descent algorithm is employed. To investigate the influence of input space fuzzificaton, several test experiments in modeling of a two benchmark chaotic systems — Mackey-Glass and Rossler chaotic time series are made.","PeriodicalId":122809,"journal":{"name":"2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Input space selective fuzzification in intuitionistic semi fuzzy-neural network\",\"authors\":\"M. Terziyska, Y. Todorov, M. Olteanu\",\"doi\":\"10.1109/ECAI.2016.7861093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the influence of the selective fuzzification of the input space in Intuitionistic Semi-Fuzzy Neural Network (ISFNN) is investigated. The ISFNN represents a structure modification of the classical fuzzy-neural approach where selective fuzzification as a means to reduce the number of the generated fuzzy rules is proposed, thus expected to reduce the number of the associated learning parameters and to achieve a degree of computational simplicity. On the other hand, the potentials of the network are supplemented by intuitionistic fuzzy logic, in order to handle uncertain data variations. As a learning procedure for the proposed structure, a two-step gradient descent algorithm is employed. To investigate the influence of input space fuzzificaton, several test experiments in modeling of a two benchmark chaotic systems — Mackey-Glass and Rossler chaotic time series are made.\",\"PeriodicalId\":122809,\"journal\":{\"name\":\"2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECAI.2016.7861093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI.2016.7861093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Input space selective fuzzification in intuitionistic semi fuzzy-neural network
In this paper, the influence of the selective fuzzification of the input space in Intuitionistic Semi-Fuzzy Neural Network (ISFNN) is investigated. The ISFNN represents a structure modification of the classical fuzzy-neural approach where selective fuzzification as a means to reduce the number of the generated fuzzy rules is proposed, thus expected to reduce the number of the associated learning parameters and to achieve a degree of computational simplicity. On the other hand, the potentials of the network are supplemented by intuitionistic fuzzy logic, in order to handle uncertain data variations. As a learning procedure for the proposed structure, a two-step gradient descent algorithm is employed. To investigate the influence of input space fuzzificaton, several test experiments in modeling of a two benchmark chaotic systems — Mackey-Glass and Rossler chaotic time series are made.