用内部视图评价流场可视化

James W. Walker, Jun Ma, S. Kuhl, Chaoli Wang
{"title":"用内部视图评价流场可视化","authors":"James W. Walker, Jun Ma, S. Kuhl, Chaoli Wang","doi":"10.1145/2492494.2501875","DOIUrl":null,"url":null,"abstract":"One popular area of research in data visualization is using streamlines to display flow fields, which depict the movement of fluids through a space. Most of the research to date has focused on external visualizations; that is, observing flow fields from outside the boundaries of the data set (e.g., Tao et al. [2013]). This research explores the efficacy of visualizing flow fields internally using an algorithm we developed to automatically compute paths through flow field interiors that provide a high degree of useful information.","PeriodicalId":102213,"journal":{"name":"Proceedings of the ACM Symposium on Applied Perception","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An evaluation of flow field visualization with internal views\",\"authors\":\"James W. Walker, Jun Ma, S. Kuhl, Chaoli Wang\",\"doi\":\"10.1145/2492494.2501875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One popular area of research in data visualization is using streamlines to display flow fields, which depict the movement of fluids through a space. Most of the research to date has focused on external visualizations; that is, observing flow fields from outside the boundaries of the data set (e.g., Tao et al. [2013]). This research explores the efficacy of visualizing flow fields internally using an algorithm we developed to automatically compute paths through flow field interiors that provide a high degree of useful information.\",\"PeriodicalId\":102213,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Applied Perception\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Applied Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492494.2501875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492494.2501875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据可视化的一个热门研究领域是使用流线来显示流场,它描述了流体在空间中的运动。迄今为止,大多数研究都集中在外部可视化上;即从数据集边界外观察流场(如Tao等[2013])。本研究探索了使用我们开发的一种算法来实现流场内部可视化的有效性,该算法可以自动计算通过流场内部的路径,从而提供高度有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evaluation of flow field visualization with internal views
One popular area of research in data visualization is using streamlines to display flow fields, which depict the movement of fluids through a space. Most of the research to date has focused on external visualizations; that is, observing flow fields from outside the boundaries of the data set (e.g., Tao et al. [2013]). This research explores the efficacy of visualizing flow fields internally using an algorithm we developed to automatically compute paths through flow field interiors that provide a high degree of useful information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信