纳米交叉棒阵列的功率延迟区性能建模与分析

Muhammed Ceylan Morgül, Furkan Peker, M. Altun
{"title":"纳米交叉棒阵列的功率延迟区性能建模与分析","authors":"Muhammed Ceylan Morgül, Furkan Peker, M. Altun","doi":"10.1109/ISVLSI.2016.100","DOIUrl":null,"url":null,"abstract":"In this study, we introduce an accurate capacitor-resistor model for nano-crossbar arrays that is to be used for power/delay/area performance analysis and optimization. Although the proposed model is technology independent, we explicitly show its applicability for three different nanoarray technologies where each crosspoint behaves as a diode, a FET, and a four-terminal switch. In order to find related capacitor and resistor values, we investigate upper/lower value limits for technology dependent parameters including doping concentration, nanowire dimension, pitch size, and layer thickness. We also use different fan-out capacitors to test the integration capability of these technologies. Comparison between the proposed model and a conventional simple one, which generally uses one/two capacitors for each crosspoint, demonstrates the necessity of using our model in order to accurately calculate power and delay values. The only exception where both models give approximately same results is the presence of considerably low valued resistive connections between switches. However, we show that this is a rare case for nano-crossbar technologies.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Power-Delay-Area Performance Modeling and Analysis for Nano-Crossbar Arrays\",\"authors\":\"Muhammed Ceylan Morgül, Furkan Peker, M. Altun\",\"doi\":\"10.1109/ISVLSI.2016.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce an accurate capacitor-resistor model for nano-crossbar arrays that is to be used for power/delay/area performance analysis and optimization. Although the proposed model is technology independent, we explicitly show its applicability for three different nanoarray technologies where each crosspoint behaves as a diode, a FET, and a four-terminal switch. In order to find related capacitor and resistor values, we investigate upper/lower value limits for technology dependent parameters including doping concentration, nanowire dimension, pitch size, and layer thickness. We also use different fan-out capacitors to test the integration capability of these technologies. Comparison between the proposed model and a conventional simple one, which generally uses one/two capacitors for each crosspoint, demonstrates the necessity of using our model in order to accurately calculate power and delay values. The only exception where both models give approximately same results is the presence of considerably low valued resistive connections between switches. However, we show that this is a rare case for nano-crossbar technologies.\",\"PeriodicalId\":140647,\"journal\":{\"name\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2016.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项研究中,我们引入了一个精确的电容-电阻模型,用于纳米交叉棒阵列的功率/延迟/面积性能分析和优化。虽然所提出的模型与技术无关,但我们明确地表明其适用于三种不同的纳米阵列技术,其中每个交叉点表现为二极管,场效应管和四端开关。为了找到相关的电容和电阻值,我们研究了技术相关参数的上下限,包括掺杂浓度、纳米线尺寸、间距尺寸和层厚度。我们还使用不同的扇出电容器来测试这些技术的集成能力。与传统的简单模型(通常每个交点使用一个或两个电容器)的比较表明,为了准确计算功率和延迟值,使用我们的模型是必要的。两种模型给出近似相同结果的唯一例外是开关之间存在相当低值的电阻连接。然而,我们表明,这是纳米交叉棒技术的罕见情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-Delay-Area Performance Modeling and Analysis for Nano-Crossbar Arrays
In this study, we introduce an accurate capacitor-resistor model for nano-crossbar arrays that is to be used for power/delay/area performance analysis and optimization. Although the proposed model is technology independent, we explicitly show its applicability for three different nanoarray technologies where each crosspoint behaves as a diode, a FET, and a four-terminal switch. In order to find related capacitor and resistor values, we investigate upper/lower value limits for technology dependent parameters including doping concentration, nanowire dimension, pitch size, and layer thickness. We also use different fan-out capacitors to test the integration capability of these technologies. Comparison between the proposed model and a conventional simple one, which generally uses one/two capacitors for each crosspoint, demonstrates the necessity of using our model in order to accurately calculate power and delay values. The only exception where both models give approximately same results is the presence of considerably low valued resistive connections between switches. However, we show that this is a rare case for nano-crossbar technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信