基于机器学习的CMP工艺优化工程

Yu Hsiang-Meng, Lin Chih-Chen, Hsu Min-hsuan, Chen Yen-Ting, Chen Kuang-Wei, T. Luoh, Yang Ling-Wu, Yang Tahone, Chen Kuang-Chao
{"title":"基于机器学习的CMP工艺优化工程","authors":"Yu Hsiang-Meng, Lin Chih-Chen, Hsu Min-hsuan, Chen Yen-Ting, Chen Kuang-Wei, T. Luoh, Yang Ling-Wu, Yang Tahone, Chen Kuang-Chao","doi":"10.1109/ISSM51728.2020.9377524","DOIUrl":null,"url":null,"abstract":"Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control to achieve better within wafer/within chip planarization performance, but also have capability to cover various topologies and layout densities patterned wafer and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density incoming pattern wafers to resolve the most challenging process issues at next generation.","PeriodicalId":270309,"journal":{"name":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CMP Process Optimization Engineering by Machine Learning\",\"authors\":\"Yu Hsiang-Meng, Lin Chih-Chen, Hsu Min-hsuan, Chen Yen-Ting, Chen Kuang-Wei, T. Luoh, Yang Ling-Wu, Yang Tahone, Chen Kuang-Chao\",\"doi\":\"10.1109/ISSM51728.2020.9377524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control to achieve better within wafer/within chip planarization performance, but also have capability to cover various topologies and layout densities patterned wafer and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density incoming pattern wafers to resolve the most challenging process issues at next generation.\",\"PeriodicalId\":270309,\"journal\":{\"name\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM51728.2020.9377524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM51728.2020.9377524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

先进的化学机械抛光(CMP)工艺不仅需要保持稳定的运行厚度控制,以获得更好的晶圆内/片内平面化性能,而且需要能够覆盖各种拓扑和布局密度的晶圆,并防止热点的发生。在本研究中,采用不同的神经网络算法和数据预处理模型,在不同的拓扑/模式密度的进料模式晶圆上实现CMP - CLC在线调谐和碟形/侵蚀预测,以解决下一代最具挑战性的工艺问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMP Process Optimization Engineering by Machine Learning
Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control to achieve better within wafer/within chip planarization performance, but also have capability to cover various topologies and layout densities patterned wafer and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density incoming pattern wafers to resolve the most challenging process issues at next generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信