基于同质性检验和非局部均值的胎儿磁共振图像去噪

K. Haris, George Kantasis, N. Maglaveras, A. Aletras
{"title":"基于同质性检验和非局部均值的胎儿磁共振图像去噪","authors":"K. Haris, George Kantasis, N. Maglaveras, A. Aletras","doi":"10.1109/CIC.2015.7408656","DOIUrl":null,"url":null,"abstract":"A novel edge-preserving denoising method for MR images is proposed. Local statistical homogeneity testing is combined with the well-known for structure preserving properties, Non Local Means (NLM) denoising method. The detection of homogeneity reduces remarkably the computational effort required by NLM which is applied only to information-rich image areas. Preliminary qualitative results on fetal and cardiac MR images are shown. These initial results are positive proving the effective noise reduction with less computational load.","PeriodicalId":414802,"journal":{"name":"2015 Computing in Cardiology Conference (CinC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fetal magnetic resonance image denoising based on homogeneity testing and Non Local Means\",\"authors\":\"K. Haris, George Kantasis, N. Maglaveras, A. Aletras\",\"doi\":\"10.1109/CIC.2015.7408656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel edge-preserving denoising method for MR images is proposed. Local statistical homogeneity testing is combined with the well-known for structure preserving properties, Non Local Means (NLM) denoising method. The detection of homogeneity reduces remarkably the computational effort required by NLM which is applied only to information-rich image areas. Preliminary qualitative results on fetal and cardiac MR images are shown. These initial results are positive proving the effective noise reduction with less computational load.\",\"PeriodicalId\":414802,\"journal\":{\"name\":\"2015 Computing in Cardiology Conference (CinC)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2015.7408656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2015.7408656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的MR图像边缘保持去噪方法。局部统计同质性检验与非局部均值(NLM)去噪方法相结合。均匀性的检测显著地减少了NLM只应用于信息丰富的图像区域所需的计算量。胎儿和心脏磁共振图像的初步定性结果显示。这些初步结果积极地证明了以较少的计算量有效地降噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fetal magnetic resonance image denoising based on homogeneity testing and Non Local Means
A novel edge-preserving denoising method for MR images is proposed. Local statistical homogeneity testing is combined with the well-known for structure preserving properties, Non Local Means (NLM) denoising method. The detection of homogeneity reduces remarkably the computational effort required by NLM which is applied only to information-rich image areas. Preliminary qualitative results on fetal and cardiac MR images are shown. These initial results are positive proving the effective noise reduction with less computational load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信