{"title":"短纤维取向分析的虚拟现实可视化","authors":"Emiliano Pastorelli, H. Herrmann","doi":"10.1109/BEC.2014.7320591","DOIUrl":null,"url":null,"abstract":"The paper investigates the beneficial contribution of visual feedback in the development of an algorithm for the automatized analysis of fibre orientations in short fibre reinforced composites. Of special interest was steel fibre reinforced concrete (SFRC), a multi-disciplinary research area involving material sciences, physics and civil engineering. More in detail, this paper explains how scientific visualization techniques, employed on a Virtual Reality environment, contribute to the understanding of the SFRC properties, both for research and educational aims. Furthermore, the analysis algorithm to obtain fibre orientation distributions from noisy tomography scans is presented.","PeriodicalId":348260,"journal":{"name":"2014 14th Biennial Baltic Electronic Conference (BEC)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Virtual Reality visualization for short fibre orientation analysis\",\"authors\":\"Emiliano Pastorelli, H. Herrmann\",\"doi\":\"10.1109/BEC.2014.7320591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the beneficial contribution of visual feedback in the development of an algorithm for the automatized analysis of fibre orientations in short fibre reinforced composites. Of special interest was steel fibre reinforced concrete (SFRC), a multi-disciplinary research area involving material sciences, physics and civil engineering. More in detail, this paper explains how scientific visualization techniques, employed on a Virtual Reality environment, contribute to the understanding of the SFRC properties, both for research and educational aims. Furthermore, the analysis algorithm to obtain fibre orientation distributions from noisy tomography scans is presented.\",\"PeriodicalId\":348260,\"journal\":{\"name\":\"2014 14th Biennial Baltic Electronic Conference (BEC)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th Biennial Baltic Electronic Conference (BEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BEC.2014.7320591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th Biennial Baltic Electronic Conference (BEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEC.2014.7320591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual Reality visualization for short fibre orientation analysis
The paper investigates the beneficial contribution of visual feedback in the development of an algorithm for the automatized analysis of fibre orientations in short fibre reinforced composites. Of special interest was steel fibre reinforced concrete (SFRC), a multi-disciplinary research area involving material sciences, physics and civil engineering. More in detail, this paper explains how scientific visualization techniques, employed on a Virtual Reality environment, contribute to the understanding of the SFRC properties, both for research and educational aims. Furthermore, the analysis algorithm to obtain fibre orientation distributions from noisy tomography scans is presented.