基于人工神经网络的阀门粘连检测与诊断

Allan Venceslau, L. A. Guedes, D. Silva
{"title":"基于人工神经网络的阀门粘连检测与诊断","authors":"Allan Venceslau, L. A. Guedes, D. Silva","doi":"10.1109/ETFA.2012.6489768","DOIUrl":null,"url":null,"abstract":"Valve stiction or static friction in control loops is a common problem in modern industrial processes. Several recent studies have tried to understand, reproduce, and detect such issue; however, the actual quantification is still a challenge. Since the valve position (mv) is normally unknown in industrial process, the main challenge is to diagnose stiction knowing only the output signals of the process (pv) and the control signal (op). This paper presents an artificial neural network approach in order to detect and quantify the amount of static friction using only the pv and op information. This study was validated by a simulation process. The results show satisfactory measurements of stiction.","PeriodicalId":222799,"journal":{"name":"Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Artificial neural network approach for detection and diagnosis of valve stiction\",\"authors\":\"Allan Venceslau, L. A. Guedes, D. Silva\",\"doi\":\"10.1109/ETFA.2012.6489768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Valve stiction or static friction in control loops is a common problem in modern industrial processes. Several recent studies have tried to understand, reproduce, and detect such issue; however, the actual quantification is still a challenge. Since the valve position (mv) is normally unknown in industrial process, the main challenge is to diagnose stiction knowing only the output signals of the process (pv) and the control signal (op). This paper presents an artificial neural network approach in order to detect and quantify the amount of static friction using only the pv and op information. This study was validated by a simulation process. The results show satisfactory measurements of stiction.\",\"PeriodicalId\":222799,\"journal\":{\"name\":\"Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2012.6489768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2012.6489768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

阀门在控制回路中的粘滞或静摩擦是现代工业过程中常见的问题。最近的几项研究试图理解、再现和发现这一问题;然而,实际的量化仍然是一个挑战。由于阀门位置(mv)在工业过程中通常是未知的,因此主要的挑战是仅知道过程的输出信号(pv)和控制信号(op)来诊断粘滞。本文提出了一种仅利用pv和op信息来检测和量化静摩擦量的人工神经网络方法。通过仿真过程验证了该研究的有效性。结果显示了令人满意的测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network approach for detection and diagnosis of valve stiction
Valve stiction or static friction in control loops is a common problem in modern industrial processes. Several recent studies have tried to understand, reproduce, and detect such issue; however, the actual quantification is still a challenge. Since the valve position (mv) is normally unknown in industrial process, the main challenge is to diagnose stiction knowing only the output signals of the process (pv) and the control signal (op). This paper presents an artificial neural network approach in order to detect and quantify the amount of static friction using only the pv and op information. This study was validated by a simulation process. The results show satisfactory measurements of stiction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信