Michael Beham, Silvana Podaras, R. Splechtna, D. Gračanin, K. Matkovič
{"title":"MC1——基于文本查询和可视化的时空数据迭代分析","authors":"Michael Beham, Silvana Podaras, R. Splechtna, D. Gračanin, K. Matkovič","doi":"10.1109/VAST.2017.8585513","DOIUrl":null,"url":null,"abstract":"Visualizing monitored traffic over a long period of time is a difficult problem. The trajectories of many traffic participants have to be taken into account to find regular patterns and unusual behavior. We introduce a novel system for visual analysis of spatio-temporal tracking data. This system, developed as response to VAST 2017 Mini-Challenge 1, enables iterative analysis steps by combining textual queries and linking and brushing interactive visualizations in ComVis tool.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MC1 --- Iterative Analysis of Spatio-temporal Data by Textual Queries and Visualizations\",\"authors\":\"Michael Beham, Silvana Podaras, R. Splechtna, D. Gračanin, K. Matkovič\",\"doi\":\"10.1109/VAST.2017.8585513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizing monitored traffic over a long period of time is a difficult problem. The trajectories of many traffic participants have to be taken into account to find regular patterns and unusual behavior. We introduce a novel system for visual analysis of spatio-temporal tracking data. This system, developed as response to VAST 2017 Mini-Challenge 1, enables iterative analysis steps by combining textual queries and linking and brushing interactive visualizations in ComVis tool.\",\"PeriodicalId\":149607,\"journal\":{\"name\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2017.8585513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MC1 --- Iterative Analysis of Spatio-temporal Data by Textual Queries and Visualizations
Visualizing monitored traffic over a long period of time is a difficult problem. The trajectories of many traffic participants have to be taken into account to find regular patterns and unusual behavior. We introduce a novel system for visual analysis of spatio-temporal tracking data. This system, developed as response to VAST 2017 Mini-Challenge 1, enables iterative analysis steps by combining textual queries and linking and brushing interactive visualizations in ComVis tool.