基于粒子群优化的神经网络研究

Yahui Wang, Zhifeng Xia, Yifeng Huo
{"title":"基于粒子群优化的神经网络研究","authors":"Yahui Wang, Zhifeng Xia, Yifeng Huo","doi":"10.1109/ICICIS.2011.106","DOIUrl":null,"url":null,"abstract":"In view of the artificial neural network weights training problem, this paper proposed a method to optimize the network's structure parameters and regularization coefficient using two-layer Particle Swarm Optimization (PSO). This algorithm was applied to train Adaline network. Compared with fixed regularization coefficient method and Sliding Mode Variable Structure optimization method, the result showed that it had the advantages of high precision and strong ability of generalization.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network Research Using Particle Swarm Optimization\",\"authors\":\"Yahui Wang, Zhifeng Xia, Yifeng Huo\",\"doi\":\"10.1109/ICICIS.2011.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the artificial neural network weights training problem, this paper proposed a method to optimize the network's structure parameters and regularization coefficient using two-layer Particle Swarm Optimization (PSO). This algorithm was applied to train Adaline network. Compared with fixed regularization coefficient method and Sliding Mode Variable Structure optimization method, the result showed that it had the advantages of high precision and strong ability of generalization.\",\"PeriodicalId\":255291,\"journal\":{\"name\":\"2011 International Conference on Internet Computing and Information Services\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Internet Computing and Information Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIS.2011.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对人工神经网络权值训练问题,提出了一种利用双层粒子群算法优化网络结构参数和正则化系数的方法。将该算法应用于Adaline网络的训练。结果表明,该方法与固定正则系数法和滑模变结构优化法相比,具有精度高、泛化能力强的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Research Using Particle Swarm Optimization
In view of the artificial neural network weights training problem, this paper proposed a method to optimize the network's structure parameters and regularization coefficient using two-layer Particle Swarm Optimization (PSO). This algorithm was applied to train Adaline network. Compared with fixed regularization coefficient method and Sliding Mode Variable Structure optimization method, the result showed that it had the advantages of high precision and strong ability of generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信