高功率密度GaN器件的先进封装和热管理

Yuan Zhao, T. Semenic, A. Bhunia
{"title":"高功率密度GaN器件的先进封装和热管理","authors":"Yuan Zhao, T. Semenic, A. Bhunia","doi":"10.1109/CSICS.2013.6659211","DOIUrl":null,"url":null,"abstract":"Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) are thermally limited much below the electrical capability of the devices. The unique challenge of a GaN HEMT is its ultra-high heat flux at the micro-scale gate fingers, which cannot be effectively and adequately addressed by conventional packaging and thermal management systems and lead to a large junction-to-ambient thermal resistance. A novel thermal interface material (TIM) that offers unique heat spreading, CTE compliance and ultra-high thermal performance was developed. The new TIM enables attaching GaN die directly onto a copper carrier. The heat spreading feature of the TIM can effectively dissipate heat near junction and greatly reduce the maximum heat flux, which leads to smaller temperature difference across each layer underneath of the TIM. A preliminary demonstration of the technology on a GaN-on-Silicon device shows 50% higher heat dissipation capability, compared to the state-of-the-art pin fin cold plate liquid cooling, while maintaining the device junction temperature at 150°C.","PeriodicalId":257256,"journal":{"name":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Advanced Packaging and Thermal Management for High Power Density GaN Devices\",\"authors\":\"Yuan Zhao, T. Semenic, A. Bhunia\",\"doi\":\"10.1109/CSICS.2013.6659211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) are thermally limited much below the electrical capability of the devices. The unique challenge of a GaN HEMT is its ultra-high heat flux at the micro-scale gate fingers, which cannot be effectively and adequately addressed by conventional packaging and thermal management systems and lead to a large junction-to-ambient thermal resistance. A novel thermal interface material (TIM) that offers unique heat spreading, CTE compliance and ultra-high thermal performance was developed. The new TIM enables attaching GaN die directly onto a copper carrier. The heat spreading feature of the TIM can effectively dissipate heat near junction and greatly reduce the maximum heat flux, which leads to smaller temperature difference across each layer underneath of the TIM. A preliminary demonstration of the technology on a GaN-on-Silicon device shows 50% higher heat dissipation capability, compared to the state-of-the-art pin fin cold plate liquid cooling, while maintaining the device junction temperature at 150°C.\",\"PeriodicalId\":257256,\"journal\":{\"name\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2013.6659211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2013.6659211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

氮化镓(GaN)高电子迁移率晶体管(hemt)的热限制远远低于器件的电容量。GaN HEMT的独特挑战是其在微尺度栅极手指处的超高热流密度,传统的封装和热管理系统无法有效和充分地解决这一问题,并导致较大的结对环境热阻。开发了一种新型热界面材料(TIM),具有独特的散热性,符合CTE和超高热性能。新的TIM可以将GaN芯片直接连接到铜载体上。TIM的散热特性可以有效地散热结附近的热量,大大降低了最大热流密度,从而减小了TIM下各层的温差。该技术在GaN-on-Silicon器件上的初步演示显示,与最先进的引脚鳍冷板液冷相比,该技术的散热能力提高了50%,同时将器件结温保持在150°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Packaging and Thermal Management for High Power Density GaN Devices
Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) are thermally limited much below the electrical capability of the devices. The unique challenge of a GaN HEMT is its ultra-high heat flux at the micro-scale gate fingers, which cannot be effectively and adequately addressed by conventional packaging and thermal management systems and lead to a large junction-to-ambient thermal resistance. A novel thermal interface material (TIM) that offers unique heat spreading, CTE compliance and ultra-high thermal performance was developed. The new TIM enables attaching GaN die directly onto a copper carrier. The heat spreading feature of the TIM can effectively dissipate heat near junction and greatly reduce the maximum heat flux, which leads to smaller temperature difference across each layer underneath of the TIM. A preliminary demonstration of the technology on a GaN-on-Silicon device shows 50% higher heat dissipation capability, compared to the state-of-the-art pin fin cold plate liquid cooling, while maintaining the device junction temperature at 150°C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信