增强l-Diversity模型下敏感轨迹数据的发布

Lin Yao, Xinyu Wang, Xin Wang, Haibo Hu, Guowei Wu
{"title":"增强l-Diversity模型下敏感轨迹数据的发布","authors":"Lin Yao, Xinyu Wang, Xin Wang, Haibo Hu, Guowei Wu","doi":"10.1109/MDM.2019.00-61","DOIUrl":null,"url":null,"abstract":"With the proliferation of location-aware devices, trajectory data have been widely collected, published, and analyzed in real-life applications. However, published trajectory data often contain sensitive attributes, so an attacker who can identify an individual from such data through record linkage, attribute linkage, or similarity attacks can gain sensitive information about this individual. To resist from these attacks, we propose a scheme called Data Privacy Preservation with Perturbation (DPPP). To protect the privacy of sensitive information, we first determine those critical location sequences that can identify specific individuals. Then we perturb these sequences by adding or deleting some moving points while ensuring the published data satisfy (l, α, β)-privacy, an enhanced privacy model from ldiversity. Our experiments on both synthetic and real-life datasets suggest that DPPP achieves better privacy while still ensuring high utility, compared with existing privacy preservation schemes on trajectory.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Publishing Sensitive Trajectory Data Under Enhanced l-Diversity Model\",\"authors\":\"Lin Yao, Xinyu Wang, Xin Wang, Haibo Hu, Guowei Wu\",\"doi\":\"10.1109/MDM.2019.00-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of location-aware devices, trajectory data have been widely collected, published, and analyzed in real-life applications. However, published trajectory data often contain sensitive attributes, so an attacker who can identify an individual from such data through record linkage, attribute linkage, or similarity attacks can gain sensitive information about this individual. To resist from these attacks, we propose a scheme called Data Privacy Preservation with Perturbation (DPPP). To protect the privacy of sensitive information, we first determine those critical location sequences that can identify specific individuals. Then we perturb these sequences by adding or deleting some moving points while ensuring the published data satisfy (l, α, β)-privacy, an enhanced privacy model from ldiversity. Our experiments on both synthetic and real-life datasets suggest that DPPP achieves better privacy while still ensuring high utility, compared with existing privacy preservation schemes on trajectory.\",\"PeriodicalId\":241426,\"journal\":{\"name\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2019.00-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

随着位置感知设备的普及,轨迹数据在实际应用中被广泛收集、发布和分析。然而,已发布的轨迹数据通常包含敏感属性,因此攻击者可以通过记录链接、属性链接或相似性攻击从这些数据中识别个人,从而获得有关该个人的敏感信息。为了抵御这些攻击,我们提出了一种称为摄动数据隐私保护(DPPP)的方案。为了保护敏感信息的隐私,我们首先确定那些可以识别特定个体的关键位置序列。然后,我们通过增加或删除一些移动点来扰动这些序列,同时确保发布的数据满足(l, α, β)-隐私,这是一种来自ldiversity的增强隐私模型。我们在合成数据集和真实数据集上的实验表明,与现有的轨迹隐私保护方案相比,DPPP在保证高效用的同时获得了更好的隐私保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Publishing Sensitive Trajectory Data Under Enhanced l-Diversity Model
With the proliferation of location-aware devices, trajectory data have been widely collected, published, and analyzed in real-life applications. However, published trajectory data often contain sensitive attributes, so an attacker who can identify an individual from such data through record linkage, attribute linkage, or similarity attacks can gain sensitive information about this individual. To resist from these attacks, we propose a scheme called Data Privacy Preservation with Perturbation (DPPP). To protect the privacy of sensitive information, we first determine those critical location sequences that can identify specific individuals. Then we perturb these sequences by adding or deleting some moving points while ensuring the published data satisfy (l, α, β)-privacy, an enhanced privacy model from ldiversity. Our experiments on both synthetic and real-life datasets suggest that DPPP achieves better privacy while still ensuring high utility, compared with existing privacy preservation schemes on trajectory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信