面向工业场景智能电网知识图的图机器学习

Guido Walter Di Donato, Andrea Damiani, Alberto Parravicini, E. Bionda, F. Soldan, C. Tornelli, M. Santambrogio
{"title":"面向工业场景智能电网知识图的图机器学习","authors":"Guido Walter Di Donato, Andrea Damiani, Alberto Parravicini, E. Bionda, F. Soldan, C. Tornelli, M. Santambrogio","doi":"10.1109/rtsi50628.2021.9597339","DOIUrl":null,"url":null,"abstract":"Knowledge Graphs (KGs) demonstrated promising application perspective in different scenarios, especially when combined with Graph Machine Learning (GML) techniques able to interpret and infer over facts. Given the natural network structures of Smart Grid equipment and the exponential growth of electric power data, Smart Grid Knowledge Graphs (SGKGs) provides unprecedented opportunities to manage massive power resources and provide intelligent applications. However, a single representation of the SGKGs is never sufficient to properly exploit GML techniques that leverage different aspects of the KG for various objectives. In this work, we provide a methodology to extract various significant views of the SGKG by iteratively applying a series of transformation to the description of the power network in the IEC CIM standard. Our implementation is based on a declarative approach to guarantee easier portability, and we deploy the transformations as a stateless microservice, facilitating modular integration with the rest of the Smart Grid Semantic Platform. Experimental evaluation on two real power distribution networks demonstrates the efficacy of our approach in highlighting important topological information, without discarding precious additional knowledge present in the SGKG.","PeriodicalId":294628,"journal":{"name":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Graph Machine Learning for Smart Grid Knowledge Graphs in Industrial Scenarios\",\"authors\":\"Guido Walter Di Donato, Andrea Damiani, Alberto Parravicini, E. Bionda, F. Soldan, C. Tornelli, M. Santambrogio\",\"doi\":\"10.1109/rtsi50628.2021.9597339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge Graphs (KGs) demonstrated promising application perspective in different scenarios, especially when combined with Graph Machine Learning (GML) techniques able to interpret and infer over facts. Given the natural network structures of Smart Grid equipment and the exponential growth of electric power data, Smart Grid Knowledge Graphs (SGKGs) provides unprecedented opportunities to manage massive power resources and provide intelligent applications. However, a single representation of the SGKGs is never sufficient to properly exploit GML techniques that leverage different aspects of the KG for various objectives. In this work, we provide a methodology to extract various significant views of the SGKG by iteratively applying a series of transformation to the description of the power network in the IEC CIM standard. Our implementation is based on a declarative approach to guarantee easier portability, and we deploy the transformations as a stateless microservice, facilitating modular integration with the rest of the Smart Grid Semantic Platform. Experimental evaluation on two real power distribution networks demonstrates the efficacy of our approach in highlighting important topological information, without discarding precious additional knowledge present in the SGKG.\",\"PeriodicalId\":294628,\"journal\":{\"name\":\"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rtsi50628.2021.9597339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtsi50628.2021.9597339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

知识图(KGs)在不同的场景中展示了有前途的应用前景,特别是当与能够解释和推断事实的图机器学习(GML)技术相结合时。鉴于智能电网设备的自然网络结构和电力数据的指数级增长,智能电网知识图谱(SGKGs)为管理大量电力资源和提供智能应用提供了前所未有的机会。然而,sgkg的单一表示永远不足以正确地利用利用KG的不同方面来实现各种目标的GML技术。在这项工作中,我们提供了一种方法,通过迭代地将一系列转换应用于IEC CIM标准中的电网描述来提取SGKG的各种重要视图。我们的实现基于声明性方法,以保证更容易的可移植性,我们将转换部署为无状态微服务,促进与智能电网语义平台其余部分的模块化集成。在两个实际配电网络上的实验评估证明了我们的方法在突出重要拓扑信息方面的有效性,而不会丢弃SGKG中存在的宝贵附加知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Graph Machine Learning for Smart Grid Knowledge Graphs in Industrial Scenarios
Knowledge Graphs (KGs) demonstrated promising application perspective in different scenarios, especially when combined with Graph Machine Learning (GML) techniques able to interpret and infer over facts. Given the natural network structures of Smart Grid equipment and the exponential growth of electric power data, Smart Grid Knowledge Graphs (SGKGs) provides unprecedented opportunities to manage massive power resources and provide intelligent applications. However, a single representation of the SGKGs is never sufficient to properly exploit GML techniques that leverage different aspects of the KG for various objectives. In this work, we provide a methodology to extract various significant views of the SGKG by iteratively applying a series of transformation to the description of the power network in the IEC CIM standard. Our implementation is based on a declarative approach to guarantee easier portability, and we deploy the transformations as a stateless microservice, facilitating modular integration with the rest of the Smart Grid Semantic Platform. Experimental evaluation on two real power distribution networks demonstrates the efficacy of our approach in highlighting important topological information, without discarding precious additional knowledge present in the SGKG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信