一种新的双修正Bat自适应消噪算法

Sofiane Fisli, M. Djendi, A. Guessoum
{"title":"一种新的双修正Bat自适应消噪算法","authors":"Sofiane Fisli, M. Djendi, A. Guessoum","doi":"10.1109/ICAEE47123.2019.9014816","DOIUrl":null,"url":null,"abstract":"In this paper, the attention focuses on the problem of acoustic noise cancellation using adaptive filtering algorithms based swarm intelligence (SI). In the last decades’ nature inspired metaheuristic algorithms such bat algorithm (BA), particle swarm optimization (PSO), grey wolf optimizer (GWO) have been applied to real-world problems such controlling robots, data mining, telecommunication and computer networks, etc. This paper suggests to use a modified Bat algorithm to design a new dual adaptive noise canceller (ANC), we discuss about the limitations of the conventional BA, PSO, and GWO algorithms compared to the proposed one, we present the simulation results that confirm the superiority of Modified BA in term of convergence speed and low steady-state error in comparison with BA, PSO and GWO algorithm behavior which fails when large filters length and non-stationary input are used. The proposed Modified BA algorithm shows significant improvement in the system mismatch (SM) and Output signal-to-noise ratio (SNR) values.","PeriodicalId":197612,"journal":{"name":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Dual Modifted Bat Algorithm for Design ofAdaptive Noise Canceller\",\"authors\":\"Sofiane Fisli, M. Djendi, A. Guessoum\",\"doi\":\"10.1109/ICAEE47123.2019.9014816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the attention focuses on the problem of acoustic noise cancellation using adaptive filtering algorithms based swarm intelligence (SI). In the last decades’ nature inspired metaheuristic algorithms such bat algorithm (BA), particle swarm optimization (PSO), grey wolf optimizer (GWO) have been applied to real-world problems such controlling robots, data mining, telecommunication and computer networks, etc. This paper suggests to use a modified Bat algorithm to design a new dual adaptive noise canceller (ANC), we discuss about the limitations of the conventional BA, PSO, and GWO algorithms compared to the proposed one, we present the simulation results that confirm the superiority of Modified BA in term of convergence speed and low steady-state error in comparison with BA, PSO and GWO algorithm behavior which fails when large filters length and non-stationary input are used. The proposed Modified BA algorithm shows significant improvement in the system mismatch (SM) and Output signal-to-noise ratio (SNR) values.\",\"PeriodicalId\":197612,\"journal\":{\"name\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE47123.2019.9014816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE47123.2019.9014816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究基于群体智能(SI)的自适应滤波算法的噪声消除问题。在过去的几十年里,受自然启发的元启发式算法,如蝙蝠算法(BA)、粒子群优化(PSO)、灰狼优化器(GWO)等,已经被应用于控制机器人、数据挖掘、电信和计算机网络等现实问题。本文提出了一种改进的Bat算法来设计一种新的双自适应消噪算法(ANC),讨论了传统的BA、PSO和GWO算法与本文提出的算法相比的局限性,并给出了仿真结果,与BA、PSO和GWO算法相比,改进的BA算法在收敛速度和低稳态误差方面具有优势,而BA、PSO和GWO算法在使用大滤波器长度和非平稳输入时失败。提出的改进BA算法在系统失配(SM)和输出信噪比(SNR)值方面有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Dual Modifted Bat Algorithm for Design ofAdaptive Noise Canceller
In this paper, the attention focuses on the problem of acoustic noise cancellation using adaptive filtering algorithms based swarm intelligence (SI). In the last decades’ nature inspired metaheuristic algorithms such bat algorithm (BA), particle swarm optimization (PSO), grey wolf optimizer (GWO) have been applied to real-world problems such controlling robots, data mining, telecommunication and computer networks, etc. This paper suggests to use a modified Bat algorithm to design a new dual adaptive noise canceller (ANC), we discuss about the limitations of the conventional BA, PSO, and GWO algorithms compared to the proposed one, we present the simulation results that confirm the superiority of Modified BA in term of convergence speed and low steady-state error in comparison with BA, PSO and GWO algorithm behavior which fails when large filters length and non-stationary input are used. The proposed Modified BA algorithm shows significant improvement in the system mismatch (SM) and Output signal-to-noise ratio (SNR) values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信