基于多智能体的商业建筑能源管理控制

Marcelo Simoes, Saurav Bhattarai
{"title":"基于多智能体的商业建筑能源管理控制","authors":"Marcelo Simoes, Saurav Bhattarai","doi":"10.1109/IAS.2011.6074360","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of Multi-Agent- Systems to control various systems in a commercial building in order to achieve maximum energy efficiency while maintaining comfort for the occupants and allowing a possible interconnection with a smart-grid. An approximated optimal control is proposed in this paper, where on-line training of a Bayesian state-machine learns the system for a given utility function. Different aspects and challenges associated with the control of a building will be discussed, and a control scheme using Multi-Agent-Systems technology is proposed.","PeriodicalId":268988,"journal":{"name":"2011 IEEE Industry Applications Society Annual Meeting","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi agent based energy management control for commercial buildings\",\"authors\":\"Marcelo Simoes, Saurav Bhattarai\",\"doi\":\"10.1109/IAS.2011.6074360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the use of Multi-Agent- Systems to control various systems in a commercial building in order to achieve maximum energy efficiency while maintaining comfort for the occupants and allowing a possible interconnection with a smart-grid. An approximated optimal control is proposed in this paper, where on-line training of a Bayesian state-machine learns the system for a given utility function. Different aspects and challenges associated with the control of a building will be discussed, and a control scheme using Multi-Agent-Systems technology is proposed.\",\"PeriodicalId\":268988,\"journal\":{\"name\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2011.6074360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2011.6074360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文讨论了在商业建筑中使用多智能体系统来控制各种系统,以实现最大的能源效率,同时保持居住者的舒适度,并允许与智能电网的可能互联。本文提出了一种近似最优控制方法,通过贝叶斯状态机的在线训练来学习给定效用函数的系统。将讨论与建筑物控制相关的不同方面和挑战,并提出一种使用多智能体系统技术的控制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi agent based energy management control for commercial buildings
This paper discusses the use of Multi-Agent- Systems to control various systems in a commercial building in order to achieve maximum energy efficiency while maintaining comfort for the occupants and allowing a possible interconnection with a smart-grid. An approximated optimal control is proposed in this paper, where on-line training of a Bayesian state-machine learns the system for a given utility function. Different aspects and challenges associated with the control of a building will be discussed, and a control scheme using Multi-Agent-Systems technology is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信