无线局域网IEEE 802.11a射频超外差接收机中信道选择滤波器的相邻信道抑制分析

N. Shairi, T. A. Rahman
{"title":"无线局域网IEEE 802.11a射频超外差接收机中信道选择滤波器的相邻信道抑制分析","authors":"N. Shairi, T. A. Rahman","doi":"10.1109/SCORED.2012.6518627","DOIUrl":null,"url":null,"abstract":"In this paper, an analysis of adjacent channel rejection (ACR) due to channel select filter (CS filter) in RF superheterodyne receiver is presented. The ACR analysis is based on IEEE 802.11a standard at 5.8 GHz frequency band. In early stage of any RF receiver design for Wireless Local Area Network (WLAN) Orthogonal Frequency Division Multiplexing (OFDM) system, a system level analysis of ACR is needed prior to any CS filter design. This is important since the IEEE 802.11a uses adaptive data rates between 6 Mbps and 54 Mbps which gives different ACR level for CS filter. Hence, ACR analysis can determine out-of-band attenuation level of CS filter for RF superheterodyne receiver. This analysis is performed in a simulation software. As result, it shows that higher out-of-band attenuation level is required in CS filter for low data rate (e.g. 6 Mbps) compared to high data rate (e.g. 54 Mbps). Thus, the 30 dB attenuation level at adjacent channels in the CS filter is suggested for the RF superheterodyne receiver in order to meet ACR performance based on IEEE 802.11a standard.","PeriodicalId":299947,"journal":{"name":"2012 IEEE Student Conference on Research and Development (SCOReD)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adjacent channel rejection analysis due to channel select filter in RF superheterodyne receiver of WLAN IEEE 802.11a\",\"authors\":\"N. Shairi, T. A. Rahman\",\"doi\":\"10.1109/SCORED.2012.6518627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an analysis of adjacent channel rejection (ACR) due to channel select filter (CS filter) in RF superheterodyne receiver is presented. The ACR analysis is based on IEEE 802.11a standard at 5.8 GHz frequency band. In early stage of any RF receiver design for Wireless Local Area Network (WLAN) Orthogonal Frequency Division Multiplexing (OFDM) system, a system level analysis of ACR is needed prior to any CS filter design. This is important since the IEEE 802.11a uses adaptive data rates between 6 Mbps and 54 Mbps which gives different ACR level for CS filter. Hence, ACR analysis can determine out-of-band attenuation level of CS filter for RF superheterodyne receiver. This analysis is performed in a simulation software. As result, it shows that higher out-of-band attenuation level is required in CS filter for low data rate (e.g. 6 Mbps) compared to high data rate (e.g. 54 Mbps). Thus, the 30 dB attenuation level at adjacent channels in the CS filter is suggested for the RF superheterodyne receiver in order to meet ACR performance based on IEEE 802.11a standard.\",\"PeriodicalId\":299947,\"journal\":{\"name\":\"2012 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2012.6518627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2012.6518627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文分析了射频超外差接收机中信道选择滤波器(CS滤波器)对相邻信道抑制(ACR)的影响。ACR分析基于5.8 GHz频段的IEEE 802.11a标准。在无线局域网(WLAN)正交频分复用(OFDM)系统射频接收机设计的早期阶段,在设计任何CS滤波器之前,都需要对ACR进行系统级分析。这一点很重要,因为IEEE 802.11a使用6 Mbps和54 Mbps之间的自适应数据速率,这为CS滤波器提供了不同的ACR水平。因此,ACR分析可以确定射频超外差接收机CS滤波器的带外衰减水平。该分析是在仿真软件中进行的。结果表明,相比于高数据速率(例如54 Mbps),低数据速率(例如6 Mbps)的CS滤波器需要更高的带外衰减水平。因此,为了满足基于IEEE 802.11a标准的ACR性能,建议射频超外差接收机CS滤波器中相邻信道的衰减水平为30 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjacent channel rejection analysis due to channel select filter in RF superheterodyne receiver of WLAN IEEE 802.11a
In this paper, an analysis of adjacent channel rejection (ACR) due to channel select filter (CS filter) in RF superheterodyne receiver is presented. The ACR analysis is based on IEEE 802.11a standard at 5.8 GHz frequency band. In early stage of any RF receiver design for Wireless Local Area Network (WLAN) Orthogonal Frequency Division Multiplexing (OFDM) system, a system level analysis of ACR is needed prior to any CS filter design. This is important since the IEEE 802.11a uses adaptive data rates between 6 Mbps and 54 Mbps which gives different ACR level for CS filter. Hence, ACR analysis can determine out-of-band attenuation level of CS filter for RF superheterodyne receiver. This analysis is performed in a simulation software. As result, it shows that higher out-of-band attenuation level is required in CS filter for low data rate (e.g. 6 Mbps) compared to high data rate (e.g. 54 Mbps). Thus, the 30 dB attenuation level at adjacent channels in the CS filter is suggested for the RF superheterodyne receiver in order to meet ACR performance based on IEEE 802.11a standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信