使用YieldStar基于衍射的叠加测量进行实时过程监控

Henry Chen, Jimmy Chang, Sheng-Tsung Tsao, Junjun Zhang, Jie Du, Congcong Fan, Alex Huang, David Xu, Sam Liu, Liang Wu, Kimi Yang, Ning Gu, L. Ren, Jian Wu, A. Tan, Sunny Xia, Ivan Mao
{"title":"使用YieldStar基于衍射的叠加测量进行实时过程监控","authors":"Henry Chen, Jimmy Chang, Sheng-Tsung Tsao, Junjun Zhang, Jie Du, Congcong Fan, Alex Huang, David Xu, Sam Liu, Liang Wu, Kimi Yang, Ning Gu, L. Ren, Jian Wu, A. Tan, Sunny Xia, Ivan Mao","doi":"10.1109/IWAPS51164.2020.9286803","DOIUrl":null,"url":null,"abstract":"Real-time process monitoring (RTPM) is a method for semiconductor manufacturing monitoring and tuning using a physical prediction model. It is a fast and nondestructive process excursion measurement method which takes inputs from diffraction-based overlay measurements from YieldStar. The prediction model is created by a physical model which receives standard manufacturing information as input. The prediction capability has been validated in a manufacturing environment experiment with thin film thickness prediction difference less than 3%.","PeriodicalId":165983,"journal":{"name":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real time process monitoring using diffraction-based overlay measurements from YieldStar\",\"authors\":\"Henry Chen, Jimmy Chang, Sheng-Tsung Tsao, Junjun Zhang, Jie Du, Congcong Fan, Alex Huang, David Xu, Sam Liu, Liang Wu, Kimi Yang, Ning Gu, L. Ren, Jian Wu, A. Tan, Sunny Xia, Ivan Mao\",\"doi\":\"10.1109/IWAPS51164.2020.9286803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time process monitoring (RTPM) is a method for semiconductor manufacturing monitoring and tuning using a physical prediction model. It is a fast and nondestructive process excursion measurement method which takes inputs from diffraction-based overlay measurements from YieldStar. The prediction model is created by a physical model which receives standard manufacturing information as input. The prediction capability has been validated in a manufacturing environment experiment with thin film thickness prediction difference less than 3%.\",\"PeriodicalId\":165983,\"journal\":{\"name\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAPS51164.2020.9286803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAPS51164.2020.9286803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实时过程监控(RTPM)是一种利用物理预测模型对半导体制造过程进行监控和调优的方法。它是一种快速、无损的过程偏移测量方法,其输入来自YieldStar基于衍射的叠加测量。预测模型由物理模型创建,该模型接收标准制造信息作为输入。在制造环境实验中验证了预测能力,薄膜厚度预测误差小于3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real time process monitoring using diffraction-based overlay measurements from YieldStar
Real-time process monitoring (RTPM) is a method for semiconductor manufacturing monitoring and tuning using a physical prediction model. It is a fast and nondestructive process excursion measurement method which takes inputs from diffraction-based overlay measurements from YieldStar. The prediction model is created by a physical model which receives standard manufacturing information as input. The prediction capability has been validated in a manufacturing environment experiment with thin film thickness prediction difference less than 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信