量子力学引力谐振子势的相对论性处理

E. Inyang, B. Ita
{"title":"量子力学引力谐振子势的相对论性处理","authors":"E. Inyang, B. Ita","doi":"10.24018/ejphysics.2021.3.3.83","DOIUrl":null,"url":null,"abstract":"The solutions of the Klein- Gordon equation for the quantum mechanical gravitational plus harmonic oscillator potential with equal scalar and vector potential have been presented using the parametric Nikiforov-Uvarov method. The energy eigenvalues were obtained in relativistic and non-relativistic regime and the corresponding un-normalized eigenfunctions in terms of Laguerre polynomials. The numerical values for the S – wave bound state were obtained.","PeriodicalId":292629,"journal":{"name":"European Journal of Applied Physics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Relativistic Treatment of Quantum Mechanical Gravitational-Harmonic Oscillator Potential\",\"authors\":\"E. Inyang, B. Ita\",\"doi\":\"10.24018/ejphysics.2021.3.3.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solutions of the Klein- Gordon equation for the quantum mechanical gravitational plus harmonic oscillator potential with equal scalar and vector potential have been presented using the parametric Nikiforov-Uvarov method. The energy eigenvalues were obtained in relativistic and non-relativistic regime and the corresponding un-normalized eigenfunctions in terms of Laguerre polynomials. The numerical values for the S – wave bound state were obtained.\",\"PeriodicalId\":292629,\"journal\":{\"name\":\"European Journal of Applied Physics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2021.3.3.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2021.3.3.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

用参数化Nikiforov-Uvarov方法给出了标量势和矢量势相等的量子力学引力加谐振子势的Klein- Gordon方程的解。得到了相对论态和非相对论态下的能量特征值,以及相应的以拉盖尔多项式表示的非归一化特征函数。得到了S波束缚态的数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativistic Treatment of Quantum Mechanical Gravitational-Harmonic Oscillator Potential
The solutions of the Klein- Gordon equation for the quantum mechanical gravitational plus harmonic oscillator potential with equal scalar and vector potential have been presented using the parametric Nikiforov-Uvarov method. The energy eigenvalues were obtained in relativistic and non-relativistic regime and the corresponding un-normalized eigenfunctions in terms of Laguerre polynomials. The numerical values for the S – wave bound state were obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信