扩散相互作用粒子系统中的Bernstein-von Mises定理和Bayes估计

J. Bishwal
{"title":"扩散相互作用粒子系统中的Bernstein-von Mises定理和Bayes估计","authors":"J. Bishwal","doi":"10.28924/ada/stat.3.11","DOIUrl":null,"url":null,"abstract":"Consistency and asymptotic normality of the Bayes estimator of the drift coefficient of an interacting particles of diffusions are studied. For the Bayes estimator, observations are taken on a fixed time interval [0, T] and asymptotics are studied in the mean-field limit as the number of interacting particles increases. Interalia, the Bernstein-von Mises theorem concerning the convergence in the mean-field limit of the posterior distribution, for smooth prior distribution and loss function, to normal distribution is proved.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bernstein-von Mises Theorem and Bayes Estimation in Interacting Particle Systems of Diffusions\",\"authors\":\"J. Bishwal\",\"doi\":\"10.28924/ada/stat.3.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consistency and asymptotic normality of the Bayes estimator of the drift coefficient of an interacting particles of diffusions are studied. For the Bayes estimator, observations are taken on a fixed time interval [0, T] and asymptotics are studied in the mean-field limit as the number of interacting particles increases. Interalia, the Bernstein-von Mises theorem concerning the convergence in the mean-field limit of the posterior distribution, for smooth prior distribution and loss function, to normal distribution is proved.\",\"PeriodicalId\":153849,\"journal\":{\"name\":\"European Journal of Statistics\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/ada/stat.3.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.3.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了扩散相互作用粒子漂移系数的贝叶斯估计的相合性和渐近正态性。对于贝叶斯估计器,在固定的时间间隔[0,T]上进行观测,并随着相互作用粒子数量的增加,研究了平均场极限的渐近性。另外,证明了关于后验分布、光滑先验分布和损失函数的平均场极限收敛于正态分布的Bernstein-von Mises定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bernstein-von Mises Theorem and Bayes Estimation in Interacting Particle Systems of Diffusions
Consistency and asymptotic normality of the Bayes estimator of the drift coefficient of an interacting particles of diffusions are studied. For the Bayes estimator, observations are taken on a fixed time interval [0, T] and asymptotics are studied in the mean-field limit as the number of interacting particles increases. Interalia, the Bernstein-von Mises theorem concerning the convergence in the mean-field limit of the posterior distribution, for smooth prior distribution and loss function, to normal distribution is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信