一种具有多故障容忍度的最小MSE传感器融合算法

O. Sarbishei, Atena Roshan Fekr, Majid Janidarmian, Benjamin Nahill, K. Radecka
{"title":"一种具有多故障容忍度的最小MSE传感器融合算法","authors":"O. Sarbishei, Atena Roshan Fekr, Majid Janidarmian, Benjamin Nahill, K. Radecka","doi":"10.1109/ETS.2013.6569380","DOIUrl":null,"url":null,"abstract":"Sensor data fusion is a common approach to provide accurate and fault-tolerant sensor readouts in a multisensor system. This paper proposes an efficient data fusion algorithm using convex optimization for a multi-sensor system with given post-calibration statistical characteristics. A preprocessing step called screening is proposed to quickly detect multiple faulty sensors and exclude them from the fusion. Experimental results are evaluated on temperature sensors.","PeriodicalId":118063,"journal":{"name":"2013 18th IEEE European Test Symposium (ETS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A minimum MSE sensor fusion algorithm with tolerance to multiple faults\",\"authors\":\"O. Sarbishei, Atena Roshan Fekr, Majid Janidarmian, Benjamin Nahill, K. Radecka\",\"doi\":\"10.1109/ETS.2013.6569380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor data fusion is a common approach to provide accurate and fault-tolerant sensor readouts in a multisensor system. This paper proposes an efficient data fusion algorithm using convex optimization for a multi-sensor system with given post-calibration statistical characteristics. A preprocessing step called screening is proposed to quickly detect multiple faulty sensors and exclude them from the fusion. Experimental results are evaluated on temperature sensors.\",\"PeriodicalId\":118063,\"journal\":{\"name\":\"2013 18th IEEE European Test Symposium (ETS)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS.2013.6569380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2013.6569380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传感器数据融合是一种在多传感器系统中提供准确和容错传感器读数的常用方法。针对给定后校正统计特性的多传感器系统,提出了一种基于凸优化的高效数据融合算法。提出了一种称为筛选的预处理步骤,可以快速检测出多个故障传感器并将其排除在融合之外。用温度传感器对实验结果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A minimum MSE sensor fusion algorithm with tolerance to multiple faults
Sensor data fusion is a common approach to provide accurate and fault-tolerant sensor readouts in a multisensor system. This paper proposes an efficient data fusion algorithm using convex optimization for a multi-sensor system with given post-calibration statistical characteristics. A preprocessing step called screening is proposed to quickly detect multiple faulty sensors and exclude them from the fusion. Experimental results are evaluated on temperature sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信