基于回归和尺度联合m估计的自适应LASSO

E. Ollila
{"title":"基于回归和尺度联合m估计的自适应LASSO","authors":"E. Ollila","doi":"10.1109/EUSIPCO.2016.7760637","DOIUrl":null,"url":null,"abstract":"The adaptive Lasso (Least Absolute Shrinkage and Selection Operator) obtains oracle variable selection property by using cleverly chosen adaptive weights for regression coefficients in the ℓ1-penalty. In this paper, in the spirit of M-estimation of regression, we propose a class of adaptive M-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. The defining estimating equations depend on a differentiable convex loss function and choosing the LS-loss function yields the standard adaptive Lasso estimate and the associated scale statistic. An efficient algorithm, a generalization of the cyclic coordinate descent algorithm, is developed for computing the proposed M-Lasso estimates. We also propose adaptive M-Lasso estimate of regression with preliminary scale estimate that uses a highly-robust bounded loss function. A unique feature of the paper is that we consider complex-valued measurements and regression parameter. Consistent variable selection property of the adaptive M-Lasso estimates are illustrated with a simulation study.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive LASSO based on joint M-estimation of regression and scale\",\"authors\":\"E. Ollila\",\"doi\":\"10.1109/EUSIPCO.2016.7760637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptive Lasso (Least Absolute Shrinkage and Selection Operator) obtains oracle variable selection property by using cleverly chosen adaptive weights for regression coefficients in the ℓ1-penalty. In this paper, in the spirit of M-estimation of regression, we propose a class of adaptive M-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. The defining estimating equations depend on a differentiable convex loss function and choosing the LS-loss function yields the standard adaptive Lasso estimate and the associated scale statistic. An efficient algorithm, a generalization of the cyclic coordinate descent algorithm, is developed for computing the proposed M-Lasso estimates. We also propose adaptive M-Lasso estimate of regression with preliminary scale estimate that uses a highly-robust bounded loss function. A unique feature of the paper is that we consider complex-valued measurements and regression parameter. Consistent variable selection property of the adaptive M-Lasso estimates are illustrated with a simulation study.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

自适应Lasso(最小绝对收缩和选择算子)通过巧妙地选择回归系数的自适应权值来获得oracle变量的选择特性。本文本着回归的m估计的精神,提出了一类自适应回归和尺度的M-Lasso估计作为广义零次梯度方程的解。定义估计方程依赖于一个可微的凸损失函数,选择ls -损失函数得到标准的自适应Lasso估计和相关的尺度统计量。在循环坐标下降算法的基础上,提出了一种计算M-Lasso估计的有效算法。我们还提出了自适应M-Lasso估计回归与初步规模估计,使用高鲁棒有界损失函数。本文的一个独特之处在于我们考虑了复值测量和回归参数。通过仿真研究说明了自适应M-Lasso估计的一致变量选择特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive LASSO based on joint M-estimation of regression and scale
The adaptive Lasso (Least Absolute Shrinkage and Selection Operator) obtains oracle variable selection property by using cleverly chosen adaptive weights for regression coefficients in the ℓ1-penalty. In this paper, in the spirit of M-estimation of regression, we propose a class of adaptive M-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. The defining estimating equations depend on a differentiable convex loss function and choosing the LS-loss function yields the standard adaptive Lasso estimate and the associated scale statistic. An efficient algorithm, a generalization of the cyclic coordinate descent algorithm, is developed for computing the proposed M-Lasso estimates. We also propose adaptive M-Lasso estimate of regression with preliminary scale estimate that uses a highly-robust bounded loss function. A unique feature of the paper is that we consider complex-valued measurements and regression parameter. Consistent variable selection property of the adaptive M-Lasso estimates are illustrated with a simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信