{"title":"抖动感知目标阻抗","authors":"Yin Sun, Jingook Kim, C. Hwang","doi":"10.1109/ISEMC.2019.8825313","DOIUrl":null,"url":null,"abstract":"A new concept of target impedance which directly correlates the I/O buffer output jitter with the power distribution network (PDN) design is proposed. Jitter-ware target impedance is derived from the time domain waveform of power voltage ripple and the maximum allowable jitter assuming the single stage buffer as a RC network, which is then applied to the PDN design given a certain jitter specification. From HSPICE simulation of transient switching current, PDN impedance and power voltage ripple, it is shown that the proposed jitter-aware target impedance successfully correlates power supply induced jitter (PSIJ) and PDN impedance parameters with a simple analytical expression.","PeriodicalId":137753,"journal":{"name":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Jitter-Aware Target Impedance\",\"authors\":\"Yin Sun, Jingook Kim, C. Hwang\",\"doi\":\"10.1109/ISEMC.2019.8825313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new concept of target impedance which directly correlates the I/O buffer output jitter with the power distribution network (PDN) design is proposed. Jitter-ware target impedance is derived from the time domain waveform of power voltage ripple and the maximum allowable jitter assuming the single stage buffer as a RC network, which is then applied to the PDN design given a certain jitter specification. From HSPICE simulation of transient switching current, PDN impedance and power voltage ripple, it is shown that the proposed jitter-aware target impedance successfully correlates power supply induced jitter (PSIJ) and PDN impedance parameters with a simple analytical expression.\",\"PeriodicalId\":137753,\"journal\":{\"name\":\"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2019.8825313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2019.8825313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new concept of target impedance which directly correlates the I/O buffer output jitter with the power distribution network (PDN) design is proposed. Jitter-ware target impedance is derived from the time domain waveform of power voltage ripple and the maximum allowable jitter assuming the single stage buffer as a RC network, which is then applied to the PDN design given a certain jitter specification. From HSPICE simulation of transient switching current, PDN impedance and power voltage ripple, it is shown that the proposed jitter-aware target impedance successfully correlates power supply induced jitter (PSIJ) and PDN impedance parameters with a simple analytical expression.