{"title":"未来柔性电力系统的挑战","authors":"A. Feliachi","doi":"10.53907/enpesj.v1i1.8","DOIUrl":null,"url":null,"abstract":"This paper describes some of the challenges that face the operation of future electric power systems. These systems are becoming more flexible and agile. Their physical structures and connections are continuously changing as microgrids, electric vehicles, and other generation and storage devices are connected/disconnected from the grid, which result in new challenges for the operation, management, and control of the systems of the future that incorporate active participation of the consumers, and high penetration of intermittent nature renewable resources such as wind and solar.","PeriodicalId":200690,"journal":{"name":"ENP Engineering Science Journal","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges for Future Flexible Electric Power Systems\",\"authors\":\"A. Feliachi\",\"doi\":\"10.53907/enpesj.v1i1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes some of the challenges that face the operation of future electric power systems. These systems are becoming more flexible and agile. Their physical structures and connections are continuously changing as microgrids, electric vehicles, and other generation and storage devices are connected/disconnected from the grid, which result in new challenges for the operation, management, and control of the systems of the future that incorporate active participation of the consumers, and high penetration of intermittent nature renewable resources such as wind and solar.\",\"PeriodicalId\":200690,\"journal\":{\"name\":\"ENP Engineering Science Journal\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ENP Engineering Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53907/enpesj.v1i1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENP Engineering Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53907/enpesj.v1i1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges for Future Flexible Electric Power Systems
This paper describes some of the challenges that face the operation of future electric power systems. These systems are becoming more flexible and agile. Their physical structures and connections are continuously changing as microgrids, electric vehicles, and other generation and storage devices are connected/disconnected from the grid, which result in new challenges for the operation, management, and control of the systems of the future that incorporate active participation of the consumers, and high penetration of intermittent nature renewable resources such as wind and solar.