机器入侵:信息处理中的自动化和股票收益的横截面

Raunaq S. Pungaliya, Yanbo Wang
{"title":"机器入侵:信息处理中的自动化和股票收益的横截面","authors":"Raunaq S. Pungaliya, Yanbo Wang","doi":"10.2139/ssrn.3221816","DOIUrl":null,"url":null,"abstract":"We separate downloads on the SEC EDGAR database into human and machine actions by the intensity of information retrieval (Ryans, 2017). The split shows that the extent of machine downloads has risen 35 times since 2004, accounting for over 96% of total downloads as of 2016. We formally investigate the relationship of machine automation in information processing and the cross-section of stock returns. We find that stocks in the lowest quintile of machine coverage outperform those in the highest quintile by 6 to 7% annually after adjusting for risk. Our results are consistent with recent theoretical work on big data (Begenau, Farboodi, and Veldkamp, 2018) and are supported by a natural experiment on the implementation of XBRL tags that enabled machine readable financial disclosure.","PeriodicalId":122400,"journal":{"name":"IRPN: Innovation & Econometrics (Topic)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Invasion: Automation in Information Processing and the Cross Section of Stock Returns\",\"authors\":\"Raunaq S. Pungaliya, Yanbo Wang\",\"doi\":\"10.2139/ssrn.3221816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We separate downloads on the SEC EDGAR database into human and machine actions by the intensity of information retrieval (Ryans, 2017). The split shows that the extent of machine downloads has risen 35 times since 2004, accounting for over 96% of total downloads as of 2016. We formally investigate the relationship of machine automation in information processing and the cross-section of stock returns. We find that stocks in the lowest quintile of machine coverage outperform those in the highest quintile by 6 to 7% annually after adjusting for risk. Our results are consistent with recent theoretical work on big data (Begenau, Farboodi, and Veldkamp, 2018) and are supported by a natural experiment on the implementation of XBRL tags that enabled machine readable financial disclosure.\",\"PeriodicalId\":122400,\"journal\":{\"name\":\"IRPN: Innovation & Econometrics (Topic)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRPN: Innovation & Econometrics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3221816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Innovation & Econometrics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3221816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们根据信息检索的强度将SEC EDGAR数据库上的下载分为人类和机器操作(ryan, 2017)。数据显示,自2004年以来,机器下载量增长了35倍,截至2016年,占总下载量的96%以上。我们正式研究了信息处理中的机器自动化与股票收益横截面的关系。我们发现,在调整风险后,机器覆盖率最低的五分之一的股票每年的表现比最高五分之一的股票高出6%至7%。我们的结果与最近关于大数据的理论工作(Begenau, Farboodi和Veldkamp, 2018)一致,并且得到了关于实现机器可读财务披露的XBRL标签的自然实验的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Invasion: Automation in Information Processing and the Cross Section of Stock Returns
We separate downloads on the SEC EDGAR database into human and machine actions by the intensity of information retrieval (Ryans, 2017). The split shows that the extent of machine downloads has risen 35 times since 2004, accounting for over 96% of total downloads as of 2016. We formally investigate the relationship of machine automation in information processing and the cross-section of stock returns. We find that stocks in the lowest quintile of machine coverage outperform those in the highest quintile by 6 to 7% annually after adjusting for risk. Our results are consistent with recent theoretical work on big data (Begenau, Farboodi, and Veldkamp, 2018) and are supported by a natural experiment on the implementation of XBRL tags that enabled machine readable financial disclosure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信