利用遗传编程分析微阵列数据集

Chun-Gui Xu, Kun-hong Liu, De-shuang Huang
{"title":"利用遗传编程分析微阵列数据集","authors":"Chun-Gui Xu, Kun-hong Liu, De-shuang Huang","doi":"10.1109/CIBCB.2009.4925725","DOIUrl":null,"url":null,"abstract":"Microarray technology has been widely applied to search for biomarkers of diseases, diagnose diseases and analyze gene regulatory network. Abundance of expression data from microarray experiments are processed by informatics tools, such as Supporting Vector Machines (SVM), Artificial Neural Network (ANN), and so on. These methods achieve good results in single dataset. Nevertheless, most analyses of microarray data are only focused on a series of data obtained from the same lab or gene chip. Then the discoveries may only be suitable for data they experimented on but lack of general sense. In this paper, we propose a genetic programming (GP) based approach to analyze microarray datasets. The GP implements classification and feature selection at the same time. To validate the significance of the selected genes and generated classification rules, the results are tested on different datasets obtained from different experimental conditions. The results confirm the efficiency of GP in the classification of different samples.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The analysis of microarray datasets using a genetic programming\",\"authors\":\"Chun-Gui Xu, Kun-hong Liu, De-shuang Huang\",\"doi\":\"10.1109/CIBCB.2009.4925725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray technology has been widely applied to search for biomarkers of diseases, diagnose diseases and analyze gene regulatory network. Abundance of expression data from microarray experiments are processed by informatics tools, such as Supporting Vector Machines (SVM), Artificial Neural Network (ANN), and so on. These methods achieve good results in single dataset. Nevertheless, most analyses of microarray data are only focused on a series of data obtained from the same lab or gene chip. Then the discoveries may only be suitable for data they experimented on but lack of general sense. In this paper, we propose a genetic programming (GP) based approach to analyze microarray datasets. The GP implements classification and feature selection at the same time. To validate the significance of the selected genes and generated classification rules, the results are tested on different datasets obtained from different experimental conditions. The results confirm the efficiency of GP in the classification of different samples.\",\"PeriodicalId\":162052,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2009.4925725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

微阵列技术在寻找疾病生物标志物、诊断疾病、分析基因调控网络等方面得到了广泛的应用。通过支持向量机(SVM)、人工神经网络(ANN)等信息学工具对微阵列实验中大量的表达数据进行处理。这些方法在单个数据集上取得了很好的效果。然而,大多数对微阵列数据的分析只集中在从同一实验室或基因芯片获得的一系列数据上。那么,这些发现可能只适用于他们实验的数据,而缺乏普遍意义。在本文中,我们提出了一种基于遗传规划(GP)的方法来分析微阵列数据集。GP同时实现了分类和特征选择。为了验证所选基因和生成的分类规则的显著性,在不同实验条件下获得的不同数据集上对结果进行了测试。结果证实了GP在不同样本分类中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The analysis of microarray datasets using a genetic programming
Microarray technology has been widely applied to search for biomarkers of diseases, diagnose diseases and analyze gene regulatory network. Abundance of expression data from microarray experiments are processed by informatics tools, such as Supporting Vector Machines (SVM), Artificial Neural Network (ANN), and so on. These methods achieve good results in single dataset. Nevertheless, most analyses of microarray data are only focused on a series of data obtained from the same lab or gene chip. Then the discoveries may only be suitable for data they experimented on but lack of general sense. In this paper, we propose a genetic programming (GP) based approach to analyze microarray datasets. The GP implements classification and feature selection at the same time. To validate the significance of the selected genes and generated classification rules, the results are tested on different datasets obtained from different experimental conditions. The results confirm the efficiency of GP in the classification of different samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信