通过使用稀疏性和PSF先验的替代优化实现超分辨率

V. Maik, Byeongho Moon, J. Paik
{"title":"通过使用稀疏性和PSF先验的替代优化实现超分辨率","authors":"V. Maik, Byeongho Moon, J. Paik","doi":"10.1109/ICCE-ASIA.2016.7804819","DOIUrl":null,"url":null,"abstract":"Existing sparse representation model uses image statistics in the form of neighborhood correlation, learning algorithm for use of redundant dictionary, etc. The ill-posed nature of the problem means that there is no exact solution so any solution is an approximate of the actual solution and this often leads to discrepancy in the form of degradation as global smoothing of the final high resolution image. In our paper we propose overcome this drawback by using point spread function (PSF) or blur prior which will remove the degradations to give us an final super enhanced high resolution image. The PSF prior is integrated in to the SRM thereby preserving the computational complexity. The experimental results using the proposed method is compared with the existing state of the art methods for performance comparison.","PeriodicalId":229557,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super resolution through alternative optimization using sparsity and PSF prior\",\"authors\":\"V. Maik, Byeongho Moon, J. Paik\",\"doi\":\"10.1109/ICCE-ASIA.2016.7804819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing sparse representation model uses image statistics in the form of neighborhood correlation, learning algorithm for use of redundant dictionary, etc. The ill-posed nature of the problem means that there is no exact solution so any solution is an approximate of the actual solution and this often leads to discrepancy in the form of degradation as global smoothing of the final high resolution image. In our paper we propose overcome this drawback by using point spread function (PSF) or blur prior which will remove the degradations to give us an final super enhanced high resolution image. The PSF prior is integrated in to the SRM thereby preserving the computational complexity. The experimental results using the proposed method is compared with the existing state of the art methods for performance comparison.\",\"PeriodicalId\":229557,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-ASIA.2016.7804819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2016.7804819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的稀疏表示模型采用图像统计的邻域相关形式,学习算法采用冗余字典等。问题的病态性质意味着没有精确解,因此任何解都是实际解的近似值,这通常会导致最终高分辨率图像的全局平滑退化形式的差异。在我们的论文中,我们建议通过使用点扩散函数(PSF)或模糊先验来克服这一缺点,这将消除退化,从而获得最终的超增强高分辨率图像。PSF先验被集成到SRM中,从而保持了计算复杂度。将所提方法的实验结果与现有的最先进方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super resolution through alternative optimization using sparsity and PSF prior
Existing sparse representation model uses image statistics in the form of neighborhood correlation, learning algorithm for use of redundant dictionary, etc. The ill-posed nature of the problem means that there is no exact solution so any solution is an approximate of the actual solution and this often leads to discrepancy in the form of degradation as global smoothing of the final high resolution image. In our paper we propose overcome this drawback by using point spread function (PSF) or blur prior which will remove the degradations to give us an final super enhanced high resolution image. The PSF prior is integrated in to the SRM thereby preserving the computational complexity. The experimental results using the proposed method is compared with the existing state of the art methods for performance comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信