周期面老化生成对抗网络

Vishal G. Thengane, Mohit B. Gawande, Akshay Dudhane, A. Gonde
{"title":"周期面老化生成对抗网络","authors":"Vishal G. Thengane, Mohit B. Gawande, Akshay Dudhane, A. Gonde","doi":"10.1109/ICIINFS.2018.8721435","DOIUrl":null,"url":null,"abstract":"The facial features of human changes with age. It is important to model the human face for cross-age verification and recognition. In this paper, we introduce a Cycle Face Aging Generative Adversarial Network (CFA-GANs) framework which preserves original face identity in the aged version of his/her face. Due to the shortage of paired data of human faces, we used CycleConsistent Generative Adversarial Network (CycleGANs) which transform an image from source domain X to target domain Y in absence of paired example. Our aim is to translate an input age group image into target age group image for face aging problems. Train on the various images, we demonstrate that our CFA-GAN learns and transfer the features of the face from the input group to target group. Results have been taken on UTKFace database to obtain aged and regenerated face images.","PeriodicalId":397083,"journal":{"name":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cycle Face Aging Generative Adversarial Networks\",\"authors\":\"Vishal G. Thengane, Mohit B. Gawande, Akshay Dudhane, A. Gonde\",\"doi\":\"10.1109/ICIINFS.2018.8721435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The facial features of human changes with age. It is important to model the human face for cross-age verification and recognition. In this paper, we introduce a Cycle Face Aging Generative Adversarial Network (CFA-GANs) framework which preserves original face identity in the aged version of his/her face. Due to the shortage of paired data of human faces, we used CycleConsistent Generative Adversarial Network (CycleGANs) which transform an image from source domain X to target domain Y in absence of paired example. Our aim is to translate an input age group image into target age group image for face aging problems. Train on the various images, we demonstrate that our CFA-GAN learns and transfer the features of the face from the input group to target group. Results have been taken on UTKFace database to obtain aged and regenerated face images.\",\"PeriodicalId\":397083,\"journal\":{\"name\":\"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2018.8721435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2018.8721435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

人的面部特征随着年龄的增长而变化。建立人脸模型对跨年龄验证和识别具有重要意义。本文提出了一种循环人脸老化生成对抗网络(CFA-GANs)框架,该框架在人脸老化版本中保留了原有的人脸身份。由于人脸配对数据的缺乏,我们使用循环一致生成对抗网络(CycleGANs)在没有配对样本的情况下将图像从源域X变换到目标域Y。我们的目的是将输入的年龄组图像翻译成目标年龄组图像,以解决面部衰老问题。在不同的图像上进行训练,我们证明了我们的CFA-GAN学习并将人脸特征从输入组转移到目标组。结果在UTKFace数据库中得到老化和再生的人脸图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycle Face Aging Generative Adversarial Networks
The facial features of human changes with age. It is important to model the human face for cross-age verification and recognition. In this paper, we introduce a Cycle Face Aging Generative Adversarial Network (CFA-GANs) framework which preserves original face identity in the aged version of his/her face. Due to the shortage of paired data of human faces, we used CycleConsistent Generative Adversarial Network (CycleGANs) which transform an image from source domain X to target domain Y in absence of paired example. Our aim is to translate an input age group image into target age group image for face aging problems. Train on the various images, we demonstrate that our CFA-GAN learns and transfer the features of the face from the input group to target group. Results have been taken on UTKFace database to obtain aged and regenerated face images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信