电动汽车轨迹聚类的两步过程

Ignacio Benítez, Carlos Blasco, A. Mocholí, A. Quijano
{"title":"电动汽车轨迹聚类的两步过程","authors":"Ignacio Benítez, Carlos Blasco, A. Mocholí, A. Quijano","doi":"10.1109/IEVC.2014.7056135","DOIUrl":null,"url":null,"abstract":"The aim of this work is the identification of typical patterns in urban mobility on the basis of real data and advanced data mining algorithms. To achieve this goal a trajectory pattern recognition system has been developed. This system encompasses two steps: the first one is a fast K-means clustering to group the trajectories according to their start and destination coordinates and the second one is the classification over a Self-Organizing Map of the trajectories grouped before. Previously to this second step, the system standardizes the trajectories to equal length criterion using Dynamic Time Warping. This work also includes the results of testing the system on a real database of fifty trajectories of trucks.","PeriodicalId":223794,"journal":{"name":"2014 IEEE International Electric Vehicle Conference (IEVC)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A two-step process for clustering electric vehicle trajectories\",\"authors\":\"Ignacio Benítez, Carlos Blasco, A. Mocholí, A. Quijano\",\"doi\":\"10.1109/IEVC.2014.7056135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is the identification of typical patterns in urban mobility on the basis of real data and advanced data mining algorithms. To achieve this goal a trajectory pattern recognition system has been developed. This system encompasses two steps: the first one is a fast K-means clustering to group the trajectories according to their start and destination coordinates and the second one is the classification over a Self-Organizing Map of the trajectories grouped before. Previously to this second step, the system standardizes the trajectories to equal length criterion using Dynamic Time Warping. This work also includes the results of testing the system on a real database of fifty trajectories of trucks.\",\"PeriodicalId\":223794,\"journal\":{\"name\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEVC.2014.7056135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electric Vehicle Conference (IEVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2014.7056135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作的目的是在真实数据和先进的数据挖掘算法的基础上识别城市交通的典型模式。为了实现这一目标,开发了一种轨迹模式识别系统。该系统包括两个步骤:第一步是快速K-means聚类,根据起点和目的地坐标对轨迹进行分组;第二步是在之前分组的轨迹的自组织映射上进行分类。在第二步之前,系统使用动态时间翘曲将轨迹标准化为等长准则。这项工作还包括在50个卡车轨迹的真实数据库上测试系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-step process for clustering electric vehicle trajectories
The aim of this work is the identification of typical patterns in urban mobility on the basis of real data and advanced data mining algorithms. To achieve this goal a trajectory pattern recognition system has been developed. This system encompasses two steps: the first one is a fast K-means clustering to group the trajectories according to their start and destination coordinates and the second one is the classification over a Self-Organizing Map of the trajectories grouped before. Previously to this second step, the system standardizes the trajectories to equal length criterion using Dynamic Time Warping. This work also includes the results of testing the system on a real database of fifty trajectories of trucks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信