L. Hallman, B. Ryvkin, E. Avrutin, A. Aho, J. Viheriälä, M. Guina, J. Kostamovaara
{"title":"双非对称结构1.5 μ m高功率激光二极管","authors":"L. Hallman, B. Ryvkin, E. Avrutin, A. Aho, J. Viheriälä, M. Guina, J. Kostamovaara","doi":"10.1109/hpd48113.2019.8938671","DOIUrl":null,"url":null,"abstract":"Design considerations for high pulsed power and brightness 1.5 $\\mu$ m laser emitters for laser radar applications, based on comprehensive semi-analytical theory, are presented. A strongly asymmetric waveguide design with a bulk active layer positioned very near the p-emitter interface is chosen to minimize the current-induced losses at high power while maintaining a single, broad transverse mode. Moderate to high doping of the n-side of the Optical Confinement Layer and high p-doping of the p-cladding layer are used to reduce the residual current-induced losses and the electric resistance of the structure. For pulsed room-temperature operation, short laser resonators are found to be advantageous. First experimental results are presented. An as-cleaved sample with a stripe width of90 $\\mu$ m and a resonator2 mm long exhibits an output power of about 18 W at a pumping current amplitude of 80 A, with 1 mm long resonators showing higher power output. Further improvements are predicted by structure optimization as well as increase in internal quantum efficiency and thermal performance.","PeriodicalId":384472,"journal":{"name":"2019 IEEE High Power Diode Lasers and Systems Conference (HPD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Double-asymmetric-structure 1.5 μ m high power laser diodes\",\"authors\":\"L. Hallman, B. Ryvkin, E. Avrutin, A. Aho, J. Viheriälä, M. Guina, J. Kostamovaara\",\"doi\":\"10.1109/hpd48113.2019.8938671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design considerations for high pulsed power and brightness 1.5 $\\\\mu$ m laser emitters for laser radar applications, based on comprehensive semi-analytical theory, are presented. A strongly asymmetric waveguide design with a bulk active layer positioned very near the p-emitter interface is chosen to minimize the current-induced losses at high power while maintaining a single, broad transverse mode. Moderate to high doping of the n-side of the Optical Confinement Layer and high p-doping of the p-cladding layer are used to reduce the residual current-induced losses and the electric resistance of the structure. For pulsed room-temperature operation, short laser resonators are found to be advantageous. First experimental results are presented. An as-cleaved sample with a stripe width of90 $\\\\mu$ m and a resonator2 mm long exhibits an output power of about 18 W at a pumping current amplitude of 80 A, with 1 mm long resonators showing higher power output. Further improvements are predicted by structure optimization as well as increase in internal quantum efficiency and thermal performance.\",\"PeriodicalId\":384472,\"journal\":{\"name\":\"2019 IEEE High Power Diode Lasers and Systems Conference (HPD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Power Diode Lasers and Systems Conference (HPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/hpd48113.2019.8938671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Power Diode Lasers and Systems Conference (HPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/hpd48113.2019.8938671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Double-asymmetric-structure 1.5 μ m high power laser diodes
Design considerations for high pulsed power and brightness 1.5 $\mu$ m laser emitters for laser radar applications, based on comprehensive semi-analytical theory, are presented. A strongly asymmetric waveguide design with a bulk active layer positioned very near the p-emitter interface is chosen to minimize the current-induced losses at high power while maintaining a single, broad transverse mode. Moderate to high doping of the n-side of the Optical Confinement Layer and high p-doping of the p-cladding layer are used to reduce the residual current-induced losses and the electric resistance of the structure. For pulsed room-temperature operation, short laser resonators are found to be advantageous. First experimental results are presented. An as-cleaved sample with a stripe width of90 $\mu$ m and a resonator2 mm long exhibits an output power of about 18 W at a pumping current amplitude of 80 A, with 1 mm long resonators showing higher power output. Further improvements are predicted by structure optimization as well as increase in internal quantum efficiency and thermal performance.