基于ASIC和FPGA的深度神经网络训练加速器设计

S. Venkataramanaiah, Shihui Yin, Yu Cao, Jae-sun Seo
{"title":"基于ASIC和FPGA的深度神经网络训练加速器设计","authors":"S. Venkataramanaiah, Shihui Yin, Yu Cao, Jae-sun Seo","doi":"10.1109/ISOCC50952.2020.9333063","DOIUrl":null,"url":null,"abstract":"In this invited paper, we present deep neural network (DNN) training accelerator designs in both ASIC and FPGA. The accelerators implements stochastic gradient descent based training algorithm in 16-bit fixed-point precision. A new cyclic weight storage and access scheme enables using the same off-the-shelf SRAMs for non-transpose and transpose operations during feed-forward and feed-backward phases, respectively, of the DNN training process. Including the cyclic weight scheme, the overall DNN training processor is implemented in both 65nm CMOS ASIC and Intel Stratix-10 FPGA hardware. We collectively report the ASIC and FPGA training accelerator results.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deep Neural Network Training Accelerator Designs in ASIC and FPGA\",\"authors\":\"S. Venkataramanaiah, Shihui Yin, Yu Cao, Jae-sun Seo\",\"doi\":\"10.1109/ISOCC50952.2020.9333063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this invited paper, we present deep neural network (DNN) training accelerator designs in both ASIC and FPGA. The accelerators implements stochastic gradient descent based training algorithm in 16-bit fixed-point precision. A new cyclic weight storage and access scheme enables using the same off-the-shelf SRAMs for non-transpose and transpose operations during feed-forward and feed-backward phases, respectively, of the DNN training process. Including the cyclic weight scheme, the overall DNN training processor is implemented in both 65nm CMOS ASIC and Intel Stratix-10 FPGA hardware. We collectively report the ASIC and FPGA training accelerator results.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9333063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们介绍了深度神经网络(DNN)训练加速器在ASIC和FPGA上的设计。加速器实现了基于随机梯度下降的16位定点精度训练算法。一种新的循环权存储和访问方案可以在DNN训练过程的前馈和后馈阶段分别使用相同的现成sram进行非转置和转置操作。包括循环权值方案,整个DNN训练处理器在65nm CMOS ASIC和Intel Stratix-10 FPGA硬件上实现。我们共同报告ASIC和FPGA训练加速器的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Network Training Accelerator Designs in ASIC and FPGA
In this invited paper, we present deep neural network (DNN) training accelerator designs in both ASIC and FPGA. The accelerators implements stochastic gradient descent based training algorithm in 16-bit fixed-point precision. A new cyclic weight storage and access scheme enables using the same off-the-shelf SRAMs for non-transpose and transpose operations during feed-forward and feed-backward phases, respectively, of the DNN training process. Including the cyclic weight scheme, the overall DNN training processor is implemented in both 65nm CMOS ASIC and Intel Stratix-10 FPGA hardware. We collectively report the ASIC and FPGA training accelerator results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信